

The Tecpro Building, Clonshaugh Business & Technology Park, Dublin 17, Ireland.

T: + 353 1 847 4220 F: + 353 1 847 4257 E: info@awnconsulting.com W: www.awnconsulting.com

HAZARDS AND HAZARDOUS MATERIALS REPORT FOR ORCEM CALIFORNIA PROPOSED GROUND GRANULATED BLAST FURNACE SLAG MANUFACTURING PLANT, 800 DERR STREET, VALLEJO, CALIFORNIA

Technical Report Prepared For

ORCEM

Technical Report Prepared By

Dr Fergal Callaghan BSc(Chem) PhD(ChemEng) MRSC
AMIChemE

Our Reference

FC/13/6587WR02_rev_0

Date Of Issue

10 March 2014

Cork Office

Unit 5, ATS Building, Carrigaline Industrial Estate, Carrigaline, Co. Cork. T: +353 21 438 7400 F: +353 21 483 4606

AWN Consulting Limited Registered in Ireland No. 319812 Directors: F Callaghan, C Dilworth, T Donnelly, E Porter Associate Director: D Kelly FC/13/6587WR02 AWN Consulting Limited

Document History

Document Reference		Original Issue Date	
13_6587WR02_0	3_6587WR02_0		
Revision Level	Revision Date	Description	Sections Affected

Record of Approval

Details	Written by	Checked by
Signature	pl Celfe	Edward Vorten
Name	Dr. Fergal Callaghan	Dr Edward Porter
Title	Director	Director
Date	10 March 14	10 March 14

	CONTENTS	Page
1.0	Introduction	4
2.0	GBFS – the Principal Material to be Stored and Used on-site	5
3.0	Other Materials Which May Be Used in Manufacturing Process	8
4.0	Other Materials Stored on-site	13
5.0	Review of Materials, Hazardous Materials and CEQA	16

1.0 INTRODUCTION

This report is an assessment of the Orcem Vallejo Project with regard to hazards and hazardous materials.

(Orcem) has filed an application with the City of Vallejo to approve a Major Use Permit and Site Development Plan to construct and operate a processing plant for the manufacture of ground granulated blast furnace slag (hereafter referred to as "GGBFS") and other cement products from GBFS (granulated blast furnace slag) and other products.

The Orcem Project would occupy a portion of the former General Mills plant site located at 800 Derr Street.

Sometimes referred to as "environmentally friendly cement", Orcem's primary finished product, GGBFS, will be produced on site, via the following major steps:

- 1. Receive via several alternative transport modes, various raw materials, including, Granulated Blast Furnace Slag (GBFS), clinker, Portland cement clinker, pozzolan, gypsum and limestone.
- 2. Store the GBFS, clinker, Portland cement clinker, pozzolan, gypsum and limestone on the site.
- 3. Process, by milling within a closed system, the GBFS granulate and gypsum into GGBFS powder, and all the materials into a variety of hydraulic cements.
- 4. Store the GGBFS and cement products within enclosed storage facilities on the site
- 5. Distribute the GGBFS and cement from the enclosed storage facilities on the site for use in construction projects throughout California and Nevada.

FC/13/6587WR02 AWN Consulting Limited

2.0 GBFS – THE PRINCIPAL MATERIAL TO BE STORED AND USED ON-SITE

GBFS, the raw material used in the process, is the principal material which will be stored, used and processed on site.

It is an inorganic, vitreous material, with a glass content around 95 - 100%, the minor impurities being minerals formed by the calcium, silicon, aluminium etc., because they were not cooled fast enough in the granulation process.

GBFS has a low solubility in water, and in fact has an inherent free moisture content, from 8% to 12%.

The glassy nature of the granules and the moisture of the GBFS minimize the dust created in either handling or storage. It is non-flammable, non-toxic and non-explosive. The bulk density is 70-80 pounds per cubic foot, depending on moisture content.

GBFS has the following typical chemical composition:

Calcium, expressed as	CaO	41 ± 3%
Silicon, expressed as	SiO_2	$35.5 \pm 2.5\%$
Aluminium, expressed as	$AI2O_3$	10.5 ± 2%
Magnesium, expressed as	MgO	7.5 ± 1.5%
Titanium, expressed as	TiO_2	< 1%
Sulphur, expressed as	SO_3	<<1%

Laboratory analysis of a GBFS sample, undertaken by Weck Laboratories, California, (California State Environmental Laboratory Accreditation Program Branch – NELAP Accreditation Certificate 04229CA, expiry 10/31/2014) is provided as Attachment A of this report.

The other materials which may be used on site, by adding to the GBFS in small quantities during the crushing process to manufacture different types of final GGBFS based product are listed as follows (The full Laboratory Analysis Report for each of these materials is provided as Attachment B of this Report).

Natural quarried materials which may be added to the GBFS during the grinding process include:

- Limestone
- Pozzolan Rock
- Gypsum

GBFS granulate is similar to the particle size of a coarse sand, with 95% of the material between approximately 5,000 micron and 125 micron in size.

The finished product GGBFS is finely ground GBFS, sometimes with minor additions to enhance performance. It has similar physical characteristics to ordinary Portland cement.

GGBFS has the following properties:

Particle Size 5-40 micron

pH (wet) 9-11
Solubility in Water very low off white Humidity <0.2%

GGBFS, as a finely ground powder, is capable of emitting fugitive dust particles if not properly contained within closed processing, storage and loading facilities (as proposed).

As an alternative, the production plant may also process clinker only, depending on market and economic conditions, although this is not the main purpose of the facility, the main purpose is the manufacture of GGBFS. If the facility is used from time to time, as may be required, for the processing of Portland cement clinker, the facility will still use the same processes, all materials are handled under enclosed conditions, with air emissions discharged through bag filtration systems to ensure no environmental impacts occur.

An analysis of Portland Cement is also included in Attachment B.

Therefore the milling process, whether undertaken using GBFS or Portland Cement Clinker, is carried out in a closed circuit system under negative pressure (no outlet to the exterior, except through high performance filters). Likewise fully sealed finished product storage in silos is provided, for either operational mode.

The Orcem Plant production process involves seven key elements:

- (1) Transport of raw materials to the Site, including GBFS, Portland cement clinker and other additives as described above:
- (2) Storage of raw materials in sufficient quantities to support continuous production (stockpile storage externally or internally in clinker building,);
- (3) Transport of raw material from storage to the Process Plant (via mobile hydraulic machinery);
- (4) Drying, grinding and blending GBFS granulate and other raw material. ;
- (5) Storage of finished GGBFS and cement products in sealed storage units;
- (6) Loading of the finished products into tanker trucks or rail cars; and
- (7) Transport of finished GGBFS and cements to markets

7.WW Constituting Entitled

An assessment has been made of the analysis data by reference to:

Guidance for Hazard Determination for Compliance with the OSHA Hazard Communication Standard (29 CFR 1910.1200)

U.S. Department of Labor, Occupational Safety and Health Administration (OSHA)

GBFS is classified as non-hazardous, with the following components and comparison with 29 CFR 1910.1200, as shown in Table 2.1:

	%	% Threshold	Conclusion
Antimony	0.00061	1	Non-Hazardous
Arsenic	ND	0.1	Non-Hazardous
Barium	0.043	1	Non-Hazardous
Beryllium	0.00069	1	Non-Hazardous
Cadmium	ND	1	Non-Hazardous
Chromium	0.0017	1	Non-Hazardous
Chromium VI	ND	0.1	Non-Hazardous
cobalt	ND	1	Non-Hazardous
Copper	ND	1	Non-Hazardous
Lead	ND	1	Non-Hazardous
Manganese	0.12	1	Non-Hazardous
Mercury	ND	1	Non-hazardous
Nickel	ND	0.1	Non-Hazardous
Selenium	0.00026	1	Non-Hazardous
Thallium	ND	1	Non-Hazardous
Vanadium	0.0029	1	Non-Hazardous

Table 2.1 GBFS Comparison with Hazardous Material Thresholds (ND is Non-Detect)

It can be stated, with reference to Proposition 65 of the State of California that the substance does contain traces of some heavy metals but at concentrations well below those which would render it hazardous.

The other materials which may be added, in small quantities, to the process are described in more detail in the following Section.

OTHER MATERIALS WHICH MAY BE USED IN THE MANUFACTURING 3.0 **PROCESS**

Limestone – a natural rock (composed mainly of calcium carbonate) which is mined and crushed for use as an aggregate in the construction industry, maybe be used on-site in small quantities – MSDS provided as Attachment C;

- Gypsum a natural material (composed of calcium sulphate) which is mined and processed for use in the construction industry (MSDS provided as Attachment D);
- Pozzolan Rock naturally occurring material derived from volcanic rock and ash deposits, used as an additive in small quantities to improve the performance of cement (MSDS provided as Attachment E);
- Portland cement clinker common construction material manufactured by blending materials including limestone, shale and clay in a kiln and processing at temperatures in excess of 1800 degrees F, may be processed on-site depending on market conditions (MSDS provided as Attachment F)

All MSDS are from the Chicago based MSDS Online Database, one of the leading sources of MSDS for the USA.

Limestone is classified as non-hazardous substance, the MSDS (see Attachment C) for limestone notes that it may produce a nuisance dust, which does not have health impacts for workers provided it is kept below occupational exposure limits.

It can be stated, with reference to Proposition 65 of the State of California that the substance does contain traces of some heavy metals but at concentrations well below those which would render it hazardous.

A review of the laboratory analysis data (see Attachment B) for limestone, against hazardous criteria, is show in Table 3.1 below.

	%	% Threshold	Conclusion
Antimony	ND	1	Non-Hazardous
Arsenic	0.000013	0.1	Non-Hazardous
Barium	0.0014	1	Non-Hazardous
Beryllium	ND	1	Non-Hazardous
Cadmium	0.000095	1	Non-Hazardous
Chromium	0.000019	1	Non-Hazardous
Chromium VI	ND	0.1	Non-Hazardous
cobalt	ND	1	Non-Hazardous
Copper	ND	1	Non-Hazardous
Lead	ND	1	Non-Hazardous
Manganese	0.0015	1	Non-Hazardous
Mercury	ND	1	Non-hazardous
Nickel	0.0002	0.1	Non-Hazardous
Selenium	0.00025	1	Non-Hazardous
Thallium	ND	1	Non-Hazardous
Vanadium	0.00017	1	Non-Hazardous

Table 3.1 Limestone comparison with hazardous material thresholds

Gypsum is classified as non-hazardous substance, the MSDS (see Attachment D) for gypsum notes that it may produce a nuisance dust, which does not have health impacts for workers provided it is kept below occupational exposure limits.

It can be stated, with reference to Proposition 65 of the State of California that the substance does contain traces of some heavy metals but at concentrations well below those which would render it hazardous.

A review of the laboratory analysis data (see Attachment B) for gypsum, against hazardous criteria, is show in Table 3.2 below.

	%	% Threshold	Conclusion
Antimony	ND	1	Non-Hazardous
Arsenic	ND	0.1	Non-Hazardous
Barium	0.00023	1	Non-Hazardous
Beryllium	ND	1	Non-Hazardous
Cadmium	ND	1	Non-Hazardous
Chromium	ND	1	Non-Hazardous
Chromium VI	ND	0.1	Non-Hazardous
cobalt	ND	1	Non-Hazardous
Copper	ND	1	Non-Hazardous
Lead	ND	1	Non-Hazardous
Manganese	0.001	1	Non-Hazardous
Mercury	ND	1	Non-hazardous
Nickel	ND	0.1	Non-Hazardous
Selenium	0.00013	1	Non-Hazardous
Thallium	ND	1	Non-Hazardous
Vanadium	ND	1	Non-Hazardous

Table 3.2 Gypsum comparison with hazardous material thresholds

Pozzolan is classified as non-hazardous substance, the MSDS (see Attachment E) for pozzolan notes that it contains crystalline silica, which may produce silicosis in susceptible persons. It also notes that pozzolan is not listed as a carcinogen by the IARC but that crystalline silica is listed as a human carcinogen.

With reference to Proposition 65 of the State of California, crystalline silica is listed as a substance which is known to the State of California to cause cancer.

It can also be stated, with reference to Proposition 65 of the State of California that the substance does contain traces of some heavy metals but at concentrations well below those which would render it hazardous.

A review of the laboratory analysis data (see Attachment B) for pozzolan, against hazardous criteria, is show in Table 2.4 below.

	%	% Threshold	Conclusion
Antimony	ND	1	Non-Hazardous
Arsenic	ND	0.1	Non-Hazardous
Barium	0.00043	1	Non-Hazardous
Beryllium	ND	1	Non-Hazardous
Cadmium	ND	1	Non-Hazardous
Chromium	ND	1	Non-Hazardous
Chromium VI	ND	0.1	Non-Hazardous
cobalt	ND	1	Non-Hazardous
Copper	ND	1	Non-Hazardous
Lead	ND	1	Non-Hazardous
Manganese	0.0085	1	Non-Hazardous
Mercury	ND	1	Non-hazardous
Nickel	ND	0.1	Non-Hazardous
Selenium	ND	1	Non-Hazardous
Thallium	ND	1	Non-Hazardous
Vanadium	ND	1	Non-Hazardous

Table 3.3 Pozzolan comparison with hazardous material thresholds

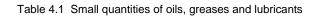
Portland cement clinker is classified as hazardous substance, the MSDS (see Attachment F) for Portland cement clinker notes that it contains crystalline silica, which may produce silicosis in susceptible persons. It also notes that Portland cement is not listed as a carcinogen by the IARC but that crystalline silica is listed as a human carcinogen.

With reference to Proposition 65 of the State of California, crystalline silica is listed as a substance which is known to the State of California to cause cancer.

It can also be stated, with reference to Proposition 65 of the State of California that the substance does contain traces of some heavy metals but at concentrations well below those which would render it hazardous.

A review of the laboratory analysis data (see Attachment B) for pozzolan, against hazardous criteria, is show in Table 3.4 below.

	%	% Threshold	Conclusion
Antimony	0.0002	1	Non-Hazardous
Arsenic	0.0004	0.1	Non-Hazardous
Barium	0.026	1	Non-Hazardous
Beryllium	0.00006	1	Non-Hazardous
Cadmium	0.00005	1	Non-Hazardous
Chromium	0.0046	1	Non-Hazardous
Chromium VI	0.0016	0.1	Non-Hazardous
cobalt	0.00028	1	Non-Hazardous
Copper	0.001	1	Non-Hazardous
Lead	0.0022	1	Non-Hazardous
Manganese	0.064	1	Non-Hazardous
Mercury	ND	1	Non-hazardous
Nickel	0.0013	0.1	Non-Hazardous
Selenium	ND	1	Non-Hazardous
Thallium	ND	1	Non-Hazardous
Vanadium	0.0046	1	Non-Hazardous


Table 3.4 Portland cement clinker comparison with hazardous material thresholds

4.0 OTHER MATERIALS STORED ON SITE

The other materials stored on-site are oils, greases and lubricant, which have a hazardous classification due to their hydrocarbon content but these materials are stored in very small quantities on-site, in individual packaged containers received from suppliers.

The expected quantities and likely material types are listed in Table 4.1 on the following page.

Product		Name	Number of U	nit containers	Capacity of one Unit Container	Location on-site
Oil	mobil gear oi	XMP 220	1		55 gallons	Workshop
Oil	Mobil gear oil	600XP320	2		55 gallons	Workshop
Oil	Mobil gear oil	DTE 26	3.5		55 gallons	Workshop
Oil	Mobil oil 460		0		55 gallons	Workshop
Oil	Oil		1.5		55 gallons	Workshop
Oil	Mobile gear o	il	4		21 gallons	Workshop
Oil	Oil		5		26 gallons	Workshop
Oil	Mobil gear oil		1		5 gallons	Workshop
Oil	Mobil oil SHC	632	1		5 gallons	Workshop
Oil	Mobile Oil SH	C 630	2		7 gallons	Workshop
Oil	Mobil oil DTC	24	1		3 gallons	Workshop
Grease	Molykote		1		55 lb	Workshop
Grease	Mobilux 2		2		55 lb	Workshop
Grease	Mobilith SHC	100	1	2	9 lb	Workshop
Grease	Mouwar		2		44 lb	Workshop
Grease	SFK LGMT 3/1		4		15 lb	Workshop
Grease	Mobilux EP 3		1		40 ib	Workshop
Grease	Mobitemp 78	NLGI 1	1		40 lb	Workshop
Oil		otoinject fluid	2		11 gallons	Air Compressor
Lubricant	Permopro Bio	-	1		45 lb	Air Compressor
Lubricant	Permo AD NS		1		55 lb	Air Compressor
Lubricant	Permo BE 02		1		65 lb	Air Compressor
						Air Compressor
Lubricant	Permo BERL	-	1		55 lb	
Lubricant	Permo BE NET		1		45 lb	Air Compressor
Oil	Oil		2		100 gallons	Intermediate Hopper
Oil	Total Azolla Z		7		375 gallons	Intermediate Hopper
Oil	Total Carter E	P 320	5		250 gallons	Intermediate Hopper
Oil	Total Carter S	SY 460	1		55 gallons	Intermediate Hopper
Oil	Total Carter S	H 220	4		20 gallons	Intermediate Hopper
Oil	Total Carter E	P 320	1		5 gallons	Intermediate Hopper
Oil	Total Carter S	Y 460	2		11 gallons	Intermediate Hopper

•

5.0 REVIEW OF MATERIALS, HAZARDOUS MATERIALS AND CEQA

In summary it can be stated:

 The only hazardous raw material handled in any size above small individual packaged amounts is Portland cement clinker

 Other hazardous materials, which consist of small individual packaged units of oils, greases and lubricants, are stored on site for use to maintain equipment.

With reference to CEQA, the following can be concluded.

Question

Would the project create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?

Response

No, the main material used on-site (GBFS) is non-hazardous as are most of the other ingredients used on-site.

Portland cement clinker may be processed at the facility, if market conditions require, but will be handled in an enclosed environment, with the only emissions being through specialised bag filtration equipment. Portland cement is widely used for construction in domestic and commercial environments and does not pose a hazard if handled correctly.

Lubricants, oils and greases, common in any manufacturing or industrial facility, will be stored and used on-site in small unit quantities and pose no hazard of significance. All liquids of this nature will be stored on spill pallets and will have associated drip trays to catch and retain any drips during use.

Therefore it can be concluded that the project will not create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials.

Question

Could the project create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?

Response

No, the only material which is hazardous that is handled in unit quantities of anything more than small packaged units is Portland cement clinker, which is present in the form of uncrushed clinker and which may be ground into powder form on-site and even if it were to leak or spill during handling, would form a mound in the location it leaks within and would be readily cleaned up by the site operations team.

Therefore it can be concluded that the project will not create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment.

7WW Goldaning Ellinou

Question

Could the project Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?

Response

No, the project is not located within ¼ mile of a school.

It can also be confirmed that the site and proposed development:

- Is not on a list of hazardous materials sites
- Is not located in or within 2 miles of, a public use airport
- Is not located close to a public air strip
- Will not impair implementation or physically interfere with any emergency plan
- Expose people or structures to wildland fire risk

ATTACHMENT A

LABORATORY ANALYSIS GBFS

	3J02078-07 Grant	ulated Blast Furn	ace Slag			
Sampled: 09/12/13 00:00	Sampleo	d By: Steve Bryan				Matrix: Solid
	Anions in solids	by EPA 9056/300	.0			
Method: EPA 9056A	Batch: W3J0646		Prepared: 10/	11/13 11	1:00	Analyst: at
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifie
Chloride, Water Leachable	ND	5.0	mg/kg	1	10/12/13 12:55	
Fluoride, Water Leachable	3.0	1.0	mg/kg	1	10/12/13 12:55	
Sulfate as S, Water Leachable	52	5.0	mg/kg	1	10/12/13 12:55	
Conv	ventional Chemistry/Physical Pa	rameters by APH	A/EPA/ASTM	l Metho	ods	
Method: ASTM D2862	Batch: W3K0786		Prepared: 11/1	18/13 1	5:08	Analyst: gza
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifie
Passes through last sieve	0.00		% by Weight	1	11/20/13 14:00	
Sieve #200 (0.075 mm Opening)	0.0340		% by Weight	1	11/20/13 14:00	
Sieve #230 (0.063mm Opening)	0.00		% by Weight	1	11/20/13 14:00	
Sieve #270 (0.053mm Opening)	0.00		% by Weight	1	11/20/13 14:00	
Sieve #325 (0.045 mm Opening)	0.00		% by Weight	1	11/20/13 14:00	
Sieve 0.100 mm Opening	99.6		% by Weight	1	11/20/13 14:00	
Method: EPA 9045C	Batch: W3J0423		Prepared: 10/0	08/13 1	5:53	Analyst: ajp
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifie
pH	11.3		Units	1	10/09/13 14:14	

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods

Method: EPA 6010B	Batch: W3J0418	0418 Prepared: 10/08/13 14:43		:43	Analyst: jck	
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Aluminum, Total	68000	500	mg/kg	100	10/10/13 14:05	
Antimony, Total	6.1	2.0	mg/kg	1	10/10/13 13:49	
Arsenic, Total	ND	1.0	mg/kg	1	10/10/13 13:49	
Barium, Total	430	2.0	mg/kg	1	10/10/13 13:49	
Beryllium, Total	6.9	0.50	mg/kg	1	10/10/13 13:49	
Cadmium, Total	ND	0.50	mg/kg	1	10/10/13 13:49	
Chromium, Total	17	1.0	mg/kg	1	10/10/13 13:49	
Cobalt, Total	ND	1.0	mg/kg	1	10/10/13 13:49	
Copper, Total	ND	5.0	mg/kg	1	10/10/13 13:49	
Iron, Total	1900	5.0	mg/kg	1	10/10/13 13:49	
Lead, Total	ND	1.0	mg/kg	1	10/10/13 13:49	
Manganese, Total	1200	1.0	mg/kg	1	10/10/13 13:49	
Nickel, Total	ND	2.0	mg/kg	1	10/10/13 13:49	
Phosphorus, Total	94	2.5	mg/kg	1	10/10/13 13:49	
Selenium, Total	2.6	1.0	mg/kg	1	10/10/13 13:49	
Thallium, Total	ND	3.0	mg/kg	1	10/10/13 13:49	
Titanium, Total	2400	100	mg/kg	100	10/10/13 14:05	
Vanadium, Total	29	1.0	mg/kg	1	10/10/13 13:49	
Zinc, Total	ND	5.0	mg/kg	1	10/10/13 13:49	

Page 12 of 34

Sampled: 09/12/13 00:00	3J02078-07	Granulated E Sampled By: S		ace Slag			Matrix: Solid
oumpred. 00/12/10 00:00			-				mutik. Colid
	Metals (Non-Aqueou	s) by EPA 600	0/7000 Sei	ries Methods	8		
Method: EPA 7196A	Batch: W3J0613			Prepared: 10/	14/13 10	:53	Analyst: ajw
Analyte	Result		MRL	Units	Dil	Analyzed	Qualifier
Chromium 6+	ND		1.0	mg/kg	1	10/22/13 15:47	O-14
Method: EPA 7471A	Batch: W3J0355			Prepared: 10/	07/13 13	:41	Analyst: apa
Analyte	Result		MRL	Units	Dil	Analyzed	Qualifier
Mercury, Total	ND		10	ug/kg	1	10/10/13 15:24	
Arsenic, Soluble on DI Extract	ND		2.0	ug/l	1	10/15/13 00:28	
Barium, Soluble on DI Extract	82		0.50	ug/l	1	10/15/13 00:28	
Beryllium, Soluble on DI Extract	ND		0.60	ug/l	2	10/16/13 16:34	M-04
Cadmium, Soluble on DI Extract	ND		0.50	ug/l	1	10/15/13 00:28	
Chromium, Soluble on DI Extract	ND		4.0	ug/l	1	10/15/13 00:28	
Cobalt, Soluble on DI Extract	ND		0.20	ug/l	1	10/16/13 16:24	
Copper, Soluble on DI Extract	ND		2.0	ug/l	1	10/15/13 00:28	
Lead, Soluble on DI Extract	ND		1.0	ug/l	1	10/15/13 00:28	
Molybdenum, Soluble on DI Extract	ND		1.0	ug/l	1	10/16/13 16:24	
Nickel, Soluble on DI Extract	ND		2.0	ug/l	1	10/15/13 00:28	
Selenium, Soluble on DI Extract	ND		2.0	ug/l	1	10/15/13 00:28	
Silver, Soluble on DI Extract	ND		0.50	ug/l	1	10/16/13 16:24	
Thallium, Soluble on DI Extract	ND		0.50	ug/l	1	10/15/13 00:28	
Vanadium, Soluble on DI Extract	7.9		5.0	ug/l	1	10/15/13 00:28	
Zinc, Soluble on DI Extract	ND		10	ug/l	1	10/15/13 00:28	
Method: EPA 7470A	Batch: W3J0426			Prepared: 10/	/08/13 17	7:26	Analyst: apa
Analyte	Result		MRL	Units	Dil	Analyzed	Qualifier
Mercury, Soluble on DI Extract	ND		0.10	ug/l	1	10/16/13 15:53	
	Metals (Non-Aqueou	s) by EPA 600	0/7000 Se	ries Method:	s		
Method: EPA 7196A	Batch: W3J0884			Prepared: 10/	/14/13 11	1:15	Analyst: atl
Analyte	Result		MRL	Units	Dil	Analyzed	Qualifier
Chromium 6+. Soluble on DI Extract	ND		0.010	mg/l	1	10/16/13 18:08	O-04

ATTACHMENT B LABORATORY ANALYSIS DATA

ATTACHMENT C LIMESTONE MSDS

ATTACHMENT D GYPSUM MSDS

ATTACHMENT E POZZOLAN ROCK MSDS

ATTACHMENT F PORTLAND CEMENT MSDS

FC/13/6587WR02 AWN Consulting Limited

END OF REPORT

CERTIFICATE OF ANALYSIS

Client: AWN Consulting Ltd 11/21/13 09:34 Report Date:

The Tecpro Building, Clonshaugh Business & Technolo Received Date: 10/02/13 09:00

Dublin IRELAND, 17

Turn Around: Normal

Attention: Fergal Callaghan **Client Project:** Project Green

Phone: 3(531) 847-4220 3(531) 847-4257 Fax:

Work Order(s): 3J02078

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Fergal Callaghan:

Enclosed are the results of analyses for samples received 10/02/13 09:00 with the Chain of Custody document. The samples were received in good condition, at 23.8 °C. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Case Narrative:

Reviewed by:

Brandon Gee **Project Manager**

Analytical Laboratory Service - Since 1964

AWN Consulting Ltd The Tecpro Building, Clonshaugh Business & Technolog Dublin IRELAND, 17 **Date Received:** 10/02/13 09:00 **Date Reported:** 11/21/13 09:34

ANALYTICAL REPORT FOR SAMPLES								
Sample ID	Sampled by:	Sample Comments	Lab ID	Matrix	Date Sampled			
Limestone	Steve Bryan		3J02078-01	Solid	09/18/13 00:00			
Limestone	Steve Bryan		3J02078-02	DI Extract	09/18/13 00:00			
Gypsum	Steve Bryan		3J02078-03	Solid	09/18/13 00:00			
Gypsum	Steve Bryan		3J02078-04	DI Extract	09/18/13 00:00			
Pozzolan Rock Fine	Steve Bryan		3J02078-05	Solid	09/12/13 00:00			
Pozzolan Rock Fine	Steve Bryan		3J02078-06	DI Extract	09/12/13 00:00			
Granulated Blast Furnace Slag	Steve Bryan		3J02078-07	Solid	09/12/13 00:00			
Granulated Blast Furnace Slag	Steve Bryan		3J02078-08	DI Extract	09/12/13 00:00			
Pozzolan Rock Coarse	Steve Bryan		3J02078-09	Solid	09/12/13 00:00			
Pozzolan Rock Coarse	Steve Bryan		3J02078-10	DI Extract	09/12/13 00:00			
Portland Cement type II/V	lab		3J02078-11	Solid	10/11/13 00:00			
Portland Cement Type II/V	Steve Bryan		3J02078-12	DI Extract	10/11/13 00:00			

ANALYSES

Anions in solids by EPA 9056/300.0

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Metals - Soluble on STLC by EPA 6000/7000 Methods

Metals (Aqueous) by EPA 6000/7000 Series Methods

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods

AWN Consulting Ltd The Tecpro Building, Clonshaugh Business & Technolog Dublin IRELAND, 17 Date Received: 10/0
Date Reported: 11/2

10/02/13 09:00 11/21/13 09:34

Sampled: 09/18/13 00:00	3J02078-01 Limestone Sampled By: Steve Bryan								
Anions in solids by EPA 9056/300.0									
Method: EPA 9056A	Batch: W3J0646	ļ	Analyst: atl						
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier			
Chloride, Water Leachable	ND	5.0	mg/kg	1	10/12/13 12:55				
Fluoride, Water Leachable	ND	1.0	mg/kg	1	10/12/13 12:55				
Sulfate as S, Water Leachable	8.4	5.0	mg/kg	1	10/12/13 12:55				

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Method: ASTM D2862	Batch: W3K0786		5:08	Analyst: gza		
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Passes through last sieve	5.00		% by Weight	1	11/20/13 14:00	
Sieve #200 (0.075 mm Opening)	1.87		% by Weight	1	11/20/13 14:00	
Sieve #230 (0.063mm Opening)	1.14		% by Weight	1	11/20/13 14:00	
Sieve #270 (0.053mm Opening)	1.56		% by Weight	1	11/20/13 14:00	
Sieve #325 (0.045 mm Opening)	1.59		% by Weight	1	11/20/13 14:00	
Sieve #400 (0.037mm Opening)	1.24		% by Weight	1	11/20/13 14:00	
Sieve 0.100 mm Opening	87.3		% by Weight	1	11/20/13 14:00	
Method: EPA 9045C	Batch: W3J0423		Analyst: ajp			
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
nH	8.6		Units	1	10/09/13 14:14	

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods

Method: EPA 6010B	Batch: W3J0418		Prepared: 10/	08/13 1	4:43	Analyst: jck
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Aluminum, Total	75	5.0	mg/kg	1	10/10/13 13:43	
Antimony, Total	ND	2.0	mg/kg	1	10/10/13 13:43	
Arsenic, Total	1.3	1.0	mg/kg	1	10/10/13 13:43	
Barium, Total	14	2.0	mg/kg	1	10/10/13 13:43	
Beryllium, Total	ND	0.50	mg/kg	1	10/10/13 13:43	
Cadmium, Total	0.95	0.50	mg/kg	1	10/10/13 13:43	
Chromium, Total	1.9	1.0	mg/kg	1	10/10/13 13:43	
Cobalt, Total	ND	1.0	mg/kg	1	10/10/13 13:43	
Copper, Total	ND	5.0	mg/kg	1	10/10/13 13:43	
Iron, Total	340	5.0	mg/kg	1	10/10/13 13:43	
Lead, Total	ND	1.0	mg/kg	1	10/10/13 13:43	
Manganese, Total	15	1.0	mg/kg	1	10/10/13 13:43	
Nickel, Total	2.0	2.0	mg/kg	1	10/10/13 13:43	
Phosphorus, Total	610	2.4	mg/kg	1	10/10/13 13:43	
Selenium, Total	2.5	1.0	mg/kg	1	10/10/13 13:43	
Thallium, Total	ND	3.0	mg/kg	1	10/10/13 13:43	
Titanium, Total	ND	1.0	mg/kg	1	10/10/13 13:43	
Vanadium, Total	1.7	1.0	mg/kg	1	10/10/13 13:43	

Analytical Laboratory Service - Since 1964

AWN Consulting Ltd
The Tecpro Building, Clonshaugh Business & Technolog
Dublin IRELAND, 17

Date Received: 10/02/13 09:00 **Date Reported:** 11/21/13 09:34

Mercury, Total	21	10	ug/kg	1	10/10/13 15:24		
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier	
Method: EPA 7471A	Batch: W3J0355		Prepared: 10/07/13 13:41				
Chromium 6+	ND	1.0	mg/kg	1	10/22/13 15:47	O-14	
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier	
Method: EPA 7196A	Batch: W3J0613		0:53	Analyst: ajw			
Zinc, Total	19	5.0	mg/kg	1	10/10/13 13:43		
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier	
Method: EPA 6010B	Batch: W3J0418 Prepared: 10/08/13 14:43					Analyst: jck	
	Metals (Non-Aqueous) by El	PA 6000/7000 Ser	ies Methods	6			
Sampled: 09/18/13 00:00	3J02078-01 Sampled	Limestone I By: Steve Bryan				Matrix: Solid	

Chromium 6+, Soluble on DI Extract

AWN Consulting Ltd The Tecpro Building, Clonshaugh Business & Technolog Dublin IRELAND, 17 Date Received: 10/02/13 09:00 Date Reported: 11/21/13 09:34

Sampled: 09/18/13 00:00	3J02078-02 Sample	Limestone d By: Steve Bryan				Matrix: DI Extract
•	Metals - Soluble on STLC	by EPA 6000/7000) Methods			
Method: EPA 6020A	Batch: W3J0429	-				
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Manganese, Soluble on DI Extract	ND	0.0010	mg/l	1	10/16/13 16:17	
	Metals (Aqueous) by EPA	A 6000/7000 Series	Methods			
Method: EPA 6010B	Batch: W3J0427	F	Prepared: 10/	08/13 10	6:59	Analyst: jck
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Aluminum, Soluble on DI extract	0.14	0.050	mg/l	1	10/11/13 15:44	
Iron, Soluble on DI Extract	ND	0.020	mg/l	1	10/11/13 15:44	
Method: EPA 6020A	Batch: W3J0429	F	Analyst: APA			
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Antimony, Soluble on DI Extract	ND	5.0	ug/l	1	10/14/13 23:17	
Arsenic, Soluble on DI Extract	ND	2.0	ug/l	1	10/14/13 23:17	
Barium, Soluble on DI Extract	16	0.50	ug/l	1	10/14/13 23:17	
Beryllium, Soluble on DI Extract	ND	0.30	ug/l	1	10/16/13 16:17	
Cadmium, Soluble on DI Extract	ND	0.50	ug/l	1	10/14/13 23:17	
Chromium, Soluble on DI Extract	ND	4.0	ug/l	1	10/14/13 23:17	
Cobalt, Soluble on DI Extract	ND	0.20	ug/l	1	10/16/13 16:17	
Copper, Soluble on DI Extract	ND	2.0	ug/l	1	10/14/13 23:17	
Lead, Soluble on DI Extract	ND	1.0	ug/l	1	10/14/13 23:17	
Molybdenum, Soluble on DI Extract	2.8	1.0	ug/l	1	10/16/13 16:17	
Nickel, Soluble on DI Extract	ND	2.0	ug/l	1	10/14/13 23:17	
Selenium, Soluble on DI Extract	ND	2.0	ug/l	1	10/14/13 23:17	
Silver, Soluble on DI Extract	ND	0.50	ug/l	1	10/16/13 16:17	
Thallium, Soluble on DI Extract	ND	0.50	ug/l	1	10/14/13 23:17	
Vanadium, Soluble on DI Extract	ND	5.0	ug/l	1	10/14/13 23:17	
Zinc, Soluble on DI Extract	ND	10	ug/l	1	10/14/13 23:17	
Method: EPA 7470A	Batch: W3J0426	F	Prepared: 10/	08/13 1	7:26	Analyst: apa
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Mercury, Soluble on DI Extract	ND	0.10	ug/l	1	10/16/13 15:53	
	Metals (Non-Aqueous) by E	PA 6000/7000 Seri	ies Method	s		
Method: EPA 7196A	Batch: W3J0884	F	Prepared: 10/	/14/13 1 [/]	1:15	Analyst: atl
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier

O-04

0.010

mg/l

10/16/13 18:08

ND

AWN Consulting Ltd The Tecpro Building, Clonshaugh Business & Technolog Dublin IRELAND, 17

Date Received: 10/02/13 09:00 Date Reported:

11/21/13 09:34

Sampled: 09/18/13 00:00	3J02078-03 Sampled	3J02078-03 Gypsum Sampled By: Steve Bryan					
	Anions in solids	by EPA 9056/300	.0				
Method: EPA 9056A	Batch: W3J0646	Prepared: 10/11/13 11:00				Analyst: atl	
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier	
Chloride, Water Leachable	ND	5.0	mg/kg	1	10/12/13 12:55		
Fluoride, Water Leachable	ND	1.0	mg/kg	1	10/12/13 12:55		
Sulfate as S, Water Leachable	15000	120	mg/kg	25	10/12/13 12:55		

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Method: ASTM D2862	Batch: W3K0786		5:08	Analyst: gza		
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Passes through last sieve	5.22		% by Weight	1	11/20/13 14:00	
Sieve #200 (0.075 mm Opening)	6.27		% by Weight	1	11/20/13 14:00	
Sieve #230 (0.063mm Opening)	2.43		% by Weight	1	11/20/13 14:00	
Sieve #270 (0.053mm Opening)	1.89		% by Weight	1	11/20/13 14:00	
Sieve #325 (0.045 mm Opening)	2.17		% by Weight	1	11/20/13 14:00	
Sieve #400 (0.037mm Opening)	1.11		% by Weight	1	11/20/13 14:00	
Sieve 0.100 mm Opening	80.2		% by Weight	1	11/20/13 14:00	
Method: EPA 9045C	Batch: W3J0423	Prepared: 10/08/13 15:53				Analyst: ajp
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
H	8.5		Units	1	10/09/13 14:14	

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods

Method: EPA 6010B	Batch: W3J0418		Prepared: 10/	08/13 1	4:43	Analyst: jck
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Aluminum, Total	140	5.0	mg/kg	1	10/10/13 13:45	
Antimony, Total	ND	2.0	mg/kg	1	10/10/13 13:45	
Arsenic, Total	ND	1.0	mg/kg	1	10/10/13 13:45	
Barium, Total	2.3	2.0	mg/kg	1	10/10/13 13:45	
Beryllium, Total	ND	0.50	mg/kg	1	10/10/13 13:45	
Cadmium, Total	ND	0.50	mg/kg	1	10/10/13 13:45	
Chromium, Total	ND	1.0	mg/kg	1	10/10/13 13:45	
Cobalt, Total	ND	1.0	mg/kg	1	10/10/13 13:45	
Copper, Total	ND	5.0	mg/kg	1	10/10/13 13:45	
Iron, Total	530	5.0	mg/kg	1	10/10/13 13:45	
Lead, Total	ND	1.0	mg/kg	1	10/10/13 13:45	
Manganese, Total	10	1.0	mg/kg	1	10/10/13 13:45	
Nickel, Total	ND	2.0	mg/kg	1	10/10/13 13:45	
Phosphorus, Total	17	2.5	mg/kg	1	10/10/13 13:45	
Selenium, Total	1.3	1.0	mg/kg	1	10/10/13 13:45	
Thallium, Total	ND	3.0	mg/kg	1	10/10/13 13:45	
Titanium, Total	2.7	1.0	mg/kg	1	10/10/13 13:45	
Vanadium, Total	ND	1.0	mg/kg	1	10/10/13 13:45	

Mercury, Total

Analytical Laboratory Service - Since 1964

AWN Consulting Ltd
The Tecpro Building, Clonshaugh Business & Technolog
Dublin IRELAND, 17

Date Received: 10/02/13 09:00 **Date Reported:** 11/21/13 09:34

10/10/13 15:24

Sampled: 09/18/13 00:00	3J02078-03 Sampled	Gypsum I By: Steve Bryan				Matrix: Solid
	Metals (Non-Aqueous) by E	PA 6000/7000 Ser	ies Methods	6		
Method: EPA 6010B	Batch: W3J0418 Prepared: 10/08/13 14:43					Analyst: jck
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Zinc, Total	ND	5.0	mg/kg	1	10/10/13 13:45	
Method: EPA 7196A	Batch: W3J0613		0:53	Analyst: ajw		
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Chromium 6+	ND	1.0	mg/kg	1	10/22/13 15:47	O-14
Method: EPA 7471A	Batch: W3J0355	Prepared: 10/07/13 13:41				Analyst: apa
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier

10

ug/kg

ND

Sampled: 09/18/13 00:00

AWN Consulting Ltd
The Tecpro Building, Clonshaugh Business & Technolog
Dublin IRELAND, 17

Date Received: 10/02/13 09:00 Date Reported: 11/21/13 09:34

3J02078-04 Gypsum
Sampled By: Steve Bryan Matrix: DI Extract

Metals - Soluble on STLC by EPA 6000/7000 Methods

 Method: EPA 6020A
 Batch: W3J0429
 Prepared: 10/08/13 17:19
 Analyst: APA

 Analyte
 Result
 MRL
 Units
 Dil
 Analyzed
 Qualifier

 Manganese, Soluble on DI Extract
 0.0066
 0.0010
 mg/l
 1
 10/16/13 16:19

Metals (Aqueous) by EPA 6000/7000 Series Methods

	Metals (Aqueous) by EPA					
Method: EPA 6010B	Batch: W3J0427	I	Analyst: jck			
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Aluminum, Soluble on DI extract	0.092	0.050	mg/l	1	10/11/13 15:47	
Iron, Soluble on DI Extract	ND	0.020	mg/l	1	10/11/13 15:47	
Method: EPA 6020A	Batch: W3J0429	ſ	Analyst: APA			
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Antimony, Soluble on DI Extract	ND	5.0	ug/l	1	10/14/13 23:25	
Arsenic, Soluble on DI Extract	6.2	2.0	ug/l	1	10/14/13 23:25	
Barium, Soluble on DI Extract	14	0.50	ug/l	1	10/14/13 23:25	
Beryllium, Soluble on DI Extract	ND	0.30	ug/l	1	10/16/13 16:19	
Cadmium, Soluble on DI Extract	ND	0.50	ug/l	1	10/14/13 23:25	
Chromium, Soluble on DI Extract	ND	4.0	ug/l	1	10/14/13 23:25	
Cobalt, Soluble on DI Extract	1.2	0.20	ug/l	1	10/16/13 16:19	
Copper, Soluble on DI Extract	ND	2.0	ug/l	1	10/14/13 23:25	
Lead, Soluble on DI Extract	ND	1.0	ug/l	1	10/14/13 23:25	
Molybdenum, Soluble on DI Extract	ND	1.0	ug/l	1	10/16/13 16:19	
Nickel, Soluble on DI Extract	6.3	2.0	ug/l	1	10/14/13 23:25	
Selenium, Soluble on DI Extract	ND	2.0	ug/l	1	10/14/13 23:25	
Silver, Soluble on DI Extract	ND	0.50	ug/l	1	10/16/13 16:19	
Thallium, Soluble on DI Extract	ND	0.50	ug/l	1	10/14/13 23:25	
Vanadium, Soluble on DI Extract	ND	5.0	ug/l	1	10/14/13 23:25	
Zinc, Soluble on DI Extract	ND	10	ug/l	1	10/14/13 23:25	
Method: EPA 7470A	Batch: W3J0426	I	Analyst: apa			
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Mercury, Soluble on DI Extract	ND	0.10	ug/l	1	10/16/13 15:53	

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods

Method: EPA 7196A	Batch: W3J0884	Prepared: 10/14/13 11:15				Analyst: atl
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Chromium 6+, Soluble on DI Extract	ND	0.010	mg/l	1	10/16/13 18:08	O-04

Date Received: 10/02/13 09:00 **Date Reported:** 11/21/13 09:34

Date Reported.

Sampled: 09/12/13 00:00	****	3J02078-05 Pozzolan Rock Fine Sampled By: Steve Bryan					
	Anions in solids	by EPA 9056/300	.0				
Method: EPA 9056A	Batch: W3J0646	Prepared: 10/11/13 11:00				Analyst: atl	
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier	
Chloride, Water Leachable	ND	5.0	mg/kg	1	10/12/13 12:55	_	
Fluoride, Water Leachable	ND	1.0	mg/kg	1	10/12/13 12:55		
Sulfate as S, Water Leachable	28	5.0	mg/kg	1	10/12/13 12:55		

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Method: ASTM D2862	Batch: W3K0786		5:08	Analyst: gza		
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Passes through last sieve	0.605		% by Weight	1	11/20/13 14:00	
Sieve #200 (0.075 mm Opening)	5.22		% by Weight	1	11/20/13 14:00	
Sieve #230 (0.063mm Opening)	0.962		% by Weight	1	11/20/13 14:00	
Sieve #270 (0.053mm Opening)	0.0648		% by Weight	1	11/20/13 14:00	
Sieve #325 (0.045 mm Opening)	0.0898		% by Weight	1	11/20/13 14:00	
Sieve 0.100 mm Opening	92.3		% by Weight	1	11/20/13 14:00	
Method: EPA 9045C	Batch: W3J0423		Analyst: ajp			
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
pH	8.8		Units	1	10/09/13 14:14	

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods

Method: EPA 6010B	Batch: W3J0418		Analyst: jck			
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Aluminum, Total	530	5.0	mg/kg	1	10/10/13 13:47	
Antimony, Total	ND	2.0	mg/kg	1	10/10/13 13:47	
Arsenic, Total	ND	1.0	mg/kg	1	10/10/13 13:47	
Barium, Total	4.3	2.0	mg/kg	1	10/10/13 13:47	
Beryllium, Total	ND	0.50	mg/kg	1	10/10/13 13:47	
Cadmium, Total	ND	0.50	mg/kg	1	10/10/13 13:47	
Chromium, Total	ND	1.0	mg/kg	1	10/10/13 13:47	
Cobalt, Total	ND	1.0	mg/kg	1	10/10/13 13:47	
Copper, Total	ND	5.0	mg/kg	1	10/10/13 13:47	
Iron, Total	920	5.0	mg/kg	1	10/10/13 13:47	
Lead, Total	ND	1.0	mg/kg	1	10/10/13 13:47	
Manganese, Total	85	1.0	mg/kg	1	10/10/13 13:47	
Nickel, Total	ND	2.0	mg/kg	1	10/10/13 13:47	
Phosphorus, Total	5.0	2.4	mg/kg	1	10/10/13 13:47	
Selenium, Total	ND	1.0	mg/kg	1	10/10/13 13:47	
Thallium, Total	ND	3.0	mg/kg	1	10/10/13 13:47	
Titanium, Total	25	1.0	mg/kg	1	10/10/13 13:47	
Vanadium, Total	ND	1.0	mg/kg	1	10/10/13 13:47	
Zinc, Total	5.4	5.0	mg/kg	1	10/10/13 13:47	

Analytical Laboratory Service - Since 1964

AWN Consulting Ltd The Tecpro Building, Clonshaugh Business & Technolog Dublin IRELAND, 17

Date Received: Date Reported:

10/10/13 15:24

10/02/13 09:00 11/21/13 09:34

Sampled: 09/12/13 00:00

Mercury, Total

3J02078-05 Pozzolan Rock Fine

Sampled By: Steve Bryan Matrix: Solid

ug/kg

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods

Method: EPA 7196A Batch: W3J0613 Prepared: 10/14/13 10:53 Analyst: ajw Analyte Result MRL Units Dil Analyzed Qualifier Chromium 6+ ND 1.0 10/22/13 15:47 0-14 mg/kg Batch: W3J0355 Method: EPA 7471A Prepared: 10/07/13 13:41 Analyst: apa Analyte Result MRL Units Analyzed Qualifier

10

ND

Chromium 6+, Soluble on DI Extract

AWN Consulting Ltd The Tecpro Building, Clonshaugh Business & Technolog Dublin IRELAND, 17

10/02/13 09:00 **Date Received:** Date Reported: 11/21/13 09:34

		Pozzolan Rock Fi	ne			
Sampled: 09/12/13 00:00	Sampled	By: Steve Bryan				Matrix: DI Extract
	Metals - Soluble on STLC	by EPA 6000/7000	0 Methods			
Method: EPA 6020A	Batch: W3J0429	F	Prepared: 10/	08/13 1	7:19	Analyst: APA
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Manganese, Soluble on DI Extract	ND	0.0020	mg/l	2	10/16/13 16:32	M-04
	Metals (Aqueous) by EPA	6000/7000 Series	Methods			
Method: EPA 6010B	Batch: W3J0427	F	Prepared: 10/	08/13 1	6:59	Analyst: jck
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Aluminum, Soluble on DI extract	0.14	0.050	mg/l	1	10/11/13 15:49	
Iron, Soluble on DI Extract	ND	0.020	mg/l	1	10/11/13 15:49	
Method: EPA 6020A	Batch: W3J0429	F	Prepared: 10/	08/13 1	7:19	Analyst: APA
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Antimony, Soluble on DI Extract	ND	5.0	ug/l	1	10/14/13 23:33	
Arsenic, Soluble on DI Extract	ND	2.0	ug/l	1	10/14/13 23:33	
Barium, Soluble on DI Extract	0.81	0.50	ug/l	1	10/14/13 23:33	
Beryllium, Soluble on DI Extract	ND	0.60	ug/l	2	10/16/13 16:32	M-04
Cadmium, Soluble on DI Extract	ND	0.50	ug/l	1	10/14/13 23:33	
Chromium, Soluble on DI Extract	ND	4.0	ug/l	1	10/14/13 23:33	
Cobalt, Soluble on DI Extract	ND	0.20	ug/l	1	10/16/13 16:22	
Copper, Soluble on DI Extract	ND	2.0	ug/l	1	10/14/13 23:33	
Lead, Soluble on DI Extract	ND	1.0	ug/l	1	10/14/13 23:33	
Molybdenum, Soluble on DI Extract	ND	1.0	ug/l	1	10/16/13 16:22	
Nickel, Soluble on DI Extract	ND	2.0	ug/l	1	10/14/13 23:33	
Selenium, Soluble on DI Extract	ND	2.0	ug/l	1	10/14/13 23:33	
Silver, Soluble on DI Extract	ND	0.50	ug/l	1	10/16/13 16:22	
Thallium, Soluble on DI Extract	ND	0.50	ug/l	1	10/14/13 23:33	
Vanadium, Soluble on DI Extract	ND	5.0	ug/l	1	10/14/13 23:33	
Zinc, Soluble on DI Extract	ND	10	ug/l	1	10/14/13 23:33	
Method: EPA 7470A	Batch: W3J0426	ſ	Prepared: 10/	08/13 1	7:26	Analyst: apa
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Mercury, Soluble on DI Extract	ND	0.10	ug/l	1	10/16/13 15:53	
	Metals (Non-Aqueous) by El	PA 6000/7000 Ser	ies Method	s		
Method: EPA 7196A	Batch: W3J0884	F	Prepared: 10/	/14/13 1 ⁻	1:15	Analyst: atl
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier

O-04

mg/l

10/16/13 18:08

0.010

ND

Date Received: 10/02/13 09:00 **Date Reported:** 11/21/13 09:34

Sampled: 09/12/13 00:00	3J02078-07 Granulated Blast Furnace Slag Sampled By: Steve Bryan					Matrix: Solid
	Anions in solids	by EPA 9056/300	.0			
Method: EPA 9056A	Batch: W3J0646	Prepared: 10/11/13 11:00				Analyst: atl
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Chloride, Water Leachable	ND	5.0	mg/kg	1	10/12/13 12:55	
Fluoride, Water Leachable	3.0	1.0	mg/kg	1	10/12/13 12:55	
Sulfate as S, Water Leachable	52	5.0	mg/kg	1	10/12/13 12:55	

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Method: ASTM D2862	Batch: W3K0786		5:08	Analyst: gza		
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Passes through last sieve	0.00		% by Weight	1	11/20/13 14:00	
Sieve #200 (0.075 mm Opening)	0.0340		% by Weight	1	11/20/13 14:00	
Sieve #230 (0.063mm Opening)	0.00		% by Weight	1	11/20/13 14:00	
Sieve #270 (0.053mm Opening)	0.00		% by Weight	1	11/20/13 14:00	
Sieve #325 (0.045 mm Opening)	0.00		% by Weight	1	11/20/13 14:00	
Sieve 0.100 mm Opening	99.6		% by Weight	1	11/20/13 14:00	
Method: EPA 9045C	Batch: W3J0423		Analyst: ajp			
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
H	11.3		Units	1	10/09/13 14:14	

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods

	Batch: W3J0418	Prepared: 10/08/13 14:43			Analyst: jck	
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Aluminum, Total	68000	500	mg/kg	100	10/10/13 14:05	
Antimony, Total	6.1	2.0	mg/kg	1	10/10/13 13:49	
Arsenic, Total	ND	1.0	mg/kg	1	10/10/13 13:49	
Barium, Total	430	2.0	mg/kg	1	10/10/13 13:49	
Beryllium, Total	6.9	0.50	mg/kg	1	10/10/13 13:49	
Cadmium, Total	ND	0.50	mg/kg	1	10/10/13 13:49	
Chromium, Total	17	1.0	mg/kg	1	10/10/13 13:49	
Cobalt, Total	ND	1.0	mg/kg	1	10/10/13 13:49	
Copper, Total	ND	5.0	mg/kg	1	10/10/13 13:49	
Iron, Total	1900	5.0	mg/kg	1	10/10/13 13:49	
Lead, Total	ND	1.0	mg/kg	1	10/10/13 13:49	
Manganese, Total	1200	1.0	mg/kg	1	10/10/13 13:49	
Nickel, Total	ND	2.0	mg/kg	1	10/10/13 13:49	
Phosphorus, Total	94	2.5	mg/kg	1	10/10/13 13:49	
Selenium, Total	2.6	1.0	mg/kg	1	10/10/13 13:49	
Thallium, Total	ND	3.0	mg/kg	1	10/10/13 13:49	
Titanium, Total	2400	100	mg/kg	100	10/10/13 14:05	
Vanadium, Total	29	1.0	mg/kg	1	10/10/13 13:49	
Zinc, Total	ND	5.0	mg/kg	1	10/10/13 13:49	

Analytical Laboratory Service - Since 1964

AWN Consulting Ltd
The Tecpro Building, Clonshaugh Business & Technolog

Date Received: Date Reported:

10/02/13 09:00 11/21/13 09:34

Dublin IRELAND, 17

Sampled: 09/12/13 00:00

Granulated Blast Furnace Slag
Sampled By: Steve Bryan Matrix: Solid

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods

3J02078-07

Method: EPA 7196A	Batch: W3J0613	Prepared: 10/14/13 10:53				Analyst: ajw
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Chromium 6+	ND	1.0	mg/kg	1	10/22/13 15:47	O-14
Method: EPA 7471A	Batch: W3J0355	Ī	Analyst: apa			
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Mercury, Total	ND	10	ug/kg	1	10/10/13 15:24	_

Date Received: 10/02/13 09:00 **Date Reported:** 11/21/13 09:34

Sampled: 09/12/13 00:00		ulated Blast Furna d By: Steve Bryan	ice Slag			Matrix: DI Extract
	Metals - Soluble on STLC	by EPA 6000/7000) Methods			
Method: EPA 6020A	Batch: W3J0429	-	Prepared: 10/	08/13 1	7:19	Analyst: APA
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifie
Manganese, Soluble on DI Extract	ND	0.0020	mg/l	2	10/16/13 16:34	M-04
	Metals (Aqueous) by EPA	A 6000/7000 Series	Methods			
Method: EPA 6010B	Batch: W3J0427	F	Prepared: 10/	08/13 10	6:59	Analyst: jcl
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifie
Aluminum, Soluble on DI extract	4.0	0.050	mg/l	1	10/11/13 15:51	
Iron, Soluble on DI Extract	ND	0.020	mg/l	1	10/11/13 15:51	
Method: EPA 6020A	Batch: W3J0429	F	Prepared: 10/	/08/13 1	7:19	Analyst: APA
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifie
Antimony, Soluble on DI Extract	ND	5.0	ug/l	1	10/15/13 00:28	
Arsenic, Soluble on DI Extract	ND	2.0	ug/l	1	10/15/13 00:28	
Barium, Soluble on DI Extract	82	0.50	ug/l	1	10/15/13 00:28	
Beryllium, Soluble on DI Extract	ND	0.60	ug/l	2	10/16/13 16:34	M-04
Cadmium, Soluble on DI Extract	ND	0.50	ug/l	1	10/15/13 00:28	
Chromium, Soluble on DI Extract	ND	4.0	ug/l	1	10/15/13 00:28	
Cobalt, Soluble on DI Extract	ND	0.20	ug/l	1	10/16/13 16:24	
Copper, Soluble on DI Extract	ND	2.0	ug/l	1	10/15/13 00:28	
Lead, Soluble on DI Extract	ND	1.0	ug/l	1	10/15/13 00:28	
Molybdenum, Soluble on DI Extract	ND	1.0	ug/l	1	10/16/13 16:24	
Nickel, Soluble on DI Extract	ND	2.0	ug/l	1	10/15/13 00:28	
Selenium, Soluble on DI Extract	ND	2.0	ug/l	1	10/15/13 00:28	
Silver, Soluble on DI Extract	ND	0.50	ug/l	1	10/16/13 16:24	
Thallium, Soluble on DI Extract	ND	0.50	ug/l	1	10/15/13 00:28	
Vanadium, Soluble on DI Extract	7.9	5.0	ug/l	1	10/15/13 00:28	
Zinc, Soluble on DI Extract	ND	10	ug/l	1	10/15/13 00:28	
Method: EPA 7470A	Batch: W3J0426	F	Prepared: 10/	08/13 1	7:26	Analyst: apa
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifie
Mercury, Soluble on DI Extract	ND	0.10	ug/l	1	10/16/13 15:53	
	Metals (Non-Aqueous) by E	:PA 6000/7000 Seri	ies Method	s		
Method: EPA 7196A	Batch: W3J0884	F	Prepared: 10/	/14/13 1 ⁻	1:15	Analyst: at
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifie
Chromium 6+, Soluble on DI Extract	ND	0.010	mg/l	1	10/16/13 18:08	O-04

Date Received: 10/02/13 09:00 **Date Reported:** 11/21/13 09:34

Sampled: 09/12/13 00:00	3J02078-09 Pe Sampled	Matrix: Solid				
	Anions in solids	by EPA 9056/300	.0			
Method: EPA 9056A	Batch: W3J0646		:00	Analyst: atl		
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Chloride, Water Leachable	ND	5.0	mg/kg	1	10/12/13 12:55	
Fluoride, Water Leachable	ND	1.0	mg/kg	1	10/12/13 12:55	
Sulfate as S, Water Leachable	6.3	5.0	mg/kg	1	10/12/13 12:55	

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Method: ASTM D2862	Batch: W3K0786		5:08	Analyst: gza		
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Passes through last sieve	0.751		% by Weight	1	11/20/13 14:00	
Sieve #200 (0.075 mm Opening)	4.38		% by Weight	1	11/20/13 14:00	
Sieve #230 (0.063mm Opening)	2.01		% by Weight	1	11/20/13 14:00	
Sieve #270 (0.053mm Opening)	0.0888		% by Weight	1	11/20/13 14:00	
Sieve #325 (0.045 mm Opening)	0.202		% by Weight	1	11/20/13 14:00	
Sieve 0.100 mm Opening	91.9		% by Weight	1	11/20/13 14:00	
Method: EPA 9045C	Batch: W3J0423		Analyst: ajp			
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
pH	8.9		Units	1	10/09/13 14:14	

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods

Method: EPA 6010B	Batch: W3J0418	Prepared: 10/08/13 14:43		4:43	Analyst: jck	
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Aluminum, Total	270	5.0	mg/kg	1	10/10/13 13:52	
Antimony, Total	ND	2.0	mg/kg	1	10/10/13 13:52	
Arsenic, Total	ND	1.0	mg/kg	1	10/10/13 13:52	
Barium, Total	3.1	2.0	mg/kg	1	10/10/13 13:52	
Beryllium, Total	ND	0.50	mg/kg	1	10/10/13 13:52	
Cadmium, Total	ND	0.50	mg/kg	1	10/10/13 13:52	
Chromium, Total	ND	1.0	mg/kg	1	10/10/13 13:52	
Cobalt, Total	ND	1.0	mg/kg	1	10/10/13 13:52	
Copper, Total	ND	5.0	mg/kg	1	10/10/13 13:52	
Iron, Total	820	5.0	mg/kg	1	10/10/13 13:52	
Lead, Total	ND	1.0	mg/kg	1	10/10/13 13:52	
Manganese, Total	71	1.0	mg/kg	1	10/10/13 13:52	
Nickel, Total	ND	2.0	mg/kg	1	10/10/13 13:52	
Phosphorus, Total	ND	2.4	mg/kg	1	10/10/13 13:52	
Selenium, Total	ND	1.0	mg/kg	1	10/10/13 13:52	
Thallium, Total	ND	3.0	mg/kg	1	10/10/13 13:52	
Titanium, Total	23	1.0	mg/kg	1	10/10/13 13:52	
Vanadium, Total	ND	1.0	mg/kg	1	10/10/13 13:52	
Zinc, Total	ND	5.0	mg/kg	1	10/10/13 13:52	

Sampled: 09/12/13 00:00

Analytical Laboratory Service - Since 1964

AWN Consulting Ltd The Tecpro Building, Clonshaugh Business & Technolog Dublin IRELAND, 17 Date Received:

Date Reported:

10/02/13 09:00 11/21/13 09:34

3.	J02078-09	Pozzo	an Rock Coarse
		Sampled By:	Steve Bryan

Sampled By: Steve Bryan Matrix: Solid

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods

Method: EPA 7196A	Batch: W3J0613	F	Prepared: 10/	14/13 10):53	Analyst: ajw
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Chromium 6+	ND	1.0	mg/kg	1	10/22/13 15:47	O-14
Method: EPA 7471A	Batch: W3J0355	ı	Prepared: 10/	07/13 13	3:41	Analyst: apa
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Mercury, Total	ND	10	ug/kg	1	10/10/13 15:24	

Date Received: 10/02/13 09:00 **Date Reported:** 11/21/13 09:34

	3J02078-10 P	ozzolan Rock Coa	arse			
Sampled: 09/12/13 00:00	Sampled	By: Steve Bryan				Matrix: DI Extract
	Metals - Soluble on STLC	by EPA 6000/7000) Methods			
Method: EPA 6020A	Batch: W3J0429	·	Prepared: 10/	/08/13 17	7:19	Analyst: APA
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Manganese, Soluble on DI Extract	0.0016	0.0010	mg/l	1	10/16/13 16:26	
	Metals (Aqueous) by EPA	. 6000/7000 Series	Methods			
Method: EPA 6010B	Batch: W3J0427	F	Prepared: 10/	/08/13 16	6:59	Analyst: jck
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Aluminum, Soluble on DI extract	0.37	0.050	mg/l	1	10/11/13 15:54	
Iron, Soluble on DI Extract	0.021	0.020	mg/l	1	10/11/13 15:54	
Method: EPA 6020A	Batch: W3J0429	F	Prepared: 10/	/08/13 17	7:19	Analyst: APA
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Antimony, Soluble on DI Extract	ND	5.0	ug/l	1	10/15/13 00:36	
Arsenic, Soluble on DI Extract	ND	2.0	ug/l	1	10/15/13 00:36	
Barium, Soluble on DI Extract	0.76	0.50	ug/l	1	10/15/13 00:36	
Beryllium, Soluble on DI Extract	ND	0.30	ug/l	1	10/16/13 16:26	
Cadmium, Soluble on DI Extract	ND	0.50	ug/l	1	10/15/13 00:36	
Chromium, Soluble on DI Extract	ND	4.0	ug/l	1	10/15/13 00:36	
Cobalt, Soluble on DI Extract	ND	0.20	ug/l	1	10/16/13 16:26	
Copper, Soluble on DI Extract	ND	2.0	ug/l	1	10/15/13 00:36	
Lead, Soluble on DI Extract	ND	1.0	ug/l	1	10/15/13 00:36	
Molybdenum, Soluble on DI Extract	ND	1.0	ug/l	1	10/16/13 16:26	
Nickel, Soluble on DI Extract	ND	2.0	ug/l	1	10/15/13 00:36	
Selenium, Soluble on DI Extract	ND	2.0	ug/l	1	10/15/13 00:36	
Silver, Soluble on DI Extract	ND	0.50	ug/l	1	10/16/13 16:26	
Thallium, Soluble on DI Extract	ND	0.50	ug/l	1	10/15/13 00:36	
Vanadium, Soluble on DI Extract	ND	5.0	ug/l	1	10/15/13 00:36	
Zinc, Soluble on DI Extract	ND	10	ug/l	1	10/15/13 00:36	
Method: EPA 7470A	Batch: W3J0426	i	Prepared: 10/	/08/13 17	7:26	Analyst: apa
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Mercury, Soluble on DI Extract	ND	0.10	ug/l	1	10/16/13 15:53	
	Metals (Non-Aqueous) by E	PA 6000/7000 Ser	ies Method	s		
Method: EPA 7196A	Batch: W3J0884	F	Prepared: 10/	/14/13 11	1:15	Analyst: atl
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Chromium 6+, Soluble on DI Extract	ND	0.010	mg/l	1	10/16/13 18:08	O-04

Date Received: 10/02/13 09:00 **Date Reported:** 11/21/13 09:34

	3J02078-11	Portland Cement type II/V	
Sampled: 10/11/13 00:00		Sampled By: lab	Matrix: Solid
	Anions in	solids by EPA 9056/300.0	

	Anions in solids	by EPA 9056/300.	0			
Method: EPA 9056A	Batch: W3J0646	1	Prepared: 10/	11/13 11	:00	Analyst: atl
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Chloride, Water Leachable	40	5.0	mg/kg	1	10/12/13 12:55	
Fluoride, Water Leachable	ND	1.0	mg/kg	1	10/12/13 12:55	
Sulfate as S, Water Leachable	9000	120	mg/kg	25	10/12/13 12:55	

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Method: ASTM D2862	Batch: W3K0786		Prepared: 11/18	3/13 1	5:08	Analyst: gza
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Passes through last sieve	24.0		% by Weight	1	11/20/13 14:00	
Sieve #200 (0.075 mm Opening)	13.2		% by Weight	1	11/20/13 14:00	
Sieve #230 (0.063mm Opening)	5.49		% by Weight	1	11/20/13 14:00	
Sieve #270 (0.053mm Opening)	8.27		% by Weight	1	11/20/13 14:00	
Sieve #325 (0.045 mm Opening)	10.1		% by Weight	1	11/20/13 14:00	
Sieve #400 (0.037mm Opening)	4.34		% by Weight	1	11/20/13 14:00	
Sieve 0.100 mm Opening	34.5		% by Weight	1	11/20/13 14:00	
Method: EPA 9045C	Batch: W3J0699		Prepared: 10/14	4/13 1 ⁻	1:20	Analyst: ajp
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
nH	10.0		Units	1	10/14/13 13:51	

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods

Method: EPA 6010B	Batch: W3J0903		Prepared: 10/	17/13 09	9:14	Analyst: jck
Analyte	Result	MRL	MRL Units		Analyzed	Qualifier
Aluminum, Total	17000	5.0	mg/kg	1	10/17/13 15:02	
Antimony, Total	2.0	2.0	mg/kg	1	10/17/13 15:02	
Arsenic, Total	4.4	1.0	mg/kg	1	10/17/13 15:02	
Barium, Total	260	2.0	mg/kg	1	10/17/13 15:02	
Beryllium, Total	0.63	0.50	mg/kg	1	10/17/13 15:02	
Cadmium, Total	0.52	0.50	mg/kg	1	10/17/13 15:02	
Chromium, Total	46	1.0	mg/kg	1	10/17/13 15:02	
Cobalt, Total	2.8	1.0	mg/kg	1	10/17/13 15:02	
Copper, Total	10	5.0	mg/kg	1	10/17/13 15:02	
Iron, Total	19000	25	mg/kg	5	10/17/13 15:02	
Lead, Total	22	1.0	mg/kg	1	10/17/13 15:02	
Manganese, Total	640	1.0	mg/kg	1	10/17/13 15:02	
Nickel, Total	13	2.0	mg/kg	1	10/17/13 15:02	
Phosphorus, Total	450	2.3	mg/kg	1	10/17/13 15:02	
Selenium, Total	ND	1.0	mg/kg	1	10/17/13 15:02	
Thallium, Total	ND	3.0	mg/kg	1	10/17/13 15:02	
Titanium, Total	900	1.0	mg/kg	1	10/17/13 15:02	
Vanadium, Total	46	1.0	mg/kg	1	10/17/13 15:02	

Date Received:

10/02/13 09:00 Date Reported: 11/21/13 09:34

Sampled: 10/11/13 00:00		land Cement typoled By: lab	oe II/V			Matrix: Solid
	Metals (Non-Aqueous) by EP	A 6000/7000 Ser	ies Methods	6		
Method: EPA 6010B	Batch: W3J0903	1	Prepared: 10/	17/13 09	9:14	Analyst: jck
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Zinc, Total	60	5.0	mg/kg	1	10/17/13 15:02	
Method: EPA 7196A	Batch: W3J0613	I	Prepared: 10/	14/13 10	0:53	Analyst: ajw
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Chromium 6+	16	1.0	mg/kg	1	10/22/13 15:47	O-14
Method: EPA 7471A	Batch: W3J0679		Prepared: 10/	14/13 08	3:59	Analyst: apa
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Mercury, Total	ND	10	ug/kg	1	10/14/13 16:00	

Chromium 6+, Soluble on DI Extract

AWN Consulting Ltd The Tecpro Building, Clonshaugh Business & Technolog Dublin IRELAND, 17 **Date Received:** 10/02/13 09:00 **Date Reported:** 11/21/13 09:34

Sampled: 10/11/13 00:00		rtland Cement Typ d By: Steve Bryan	e II/V			Matrix: DI Extract
	Metals - Soluble on STLC) Methods			
Method: EPA 6020A	Batch: W3J0869	•	repared: 10/	/16/13 14	4:09	Analyst: APA
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Manganese, Soluble on DI Extract	0.0076	0.0010	mg/l	1	10/24/13 11:45	·
	Metals (Aqueous) by EPA	A 6000/7000 Series	Methods			
Method: EPA 6010B	Batch: W3J0868	F	Prepared: 10/	/16/13 1	4:05	Analyst: jck
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Aluminum, Soluble on DI extract	0.47	0.050	mg/l	1	10/17/13 11:48	
Iron, Soluble on DI Extract	0.044	0.020	mg/l	1	10/17/13 11:48	
Method: EPA 6020A	Batch: W3J0869	Prepared: 10/16/13 14:09				Analyst: APA
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Antimony, Soluble on DI Extract	ND	5.0	ug/l	1	10/23/13 19:41	
Arsenic, Soluble on DI Extract	4.4	2.0	ug/l	1	10/23/13 19:41	
Barium, Soluble on DI Extract	4700	0.50	ug/l	1	10/23/13 19:41	
Beryllium, Soluble on DI Extract	ND	0.30	ug/l	1	10/23/13 19:41	
Cadmium, Soluble on DI Extract	ND	0.50	ug/l	1	10/23/13 19:41	
Chromium, Soluble on DI Extract	25	4.0	ug/l	1	10/24/13 11:45	
Cobalt, Soluble on DI Extract	2.4	0.20	ug/l	1	10/23/13 19:41	
Copper, Soluble on DI Extract	4.4	2.0	ug/l	1	10/24/13 11:45	
Lead, Soluble on DI Extract	3.0	1.0	ug/l	1	10/23/13 19:41	
Molybdenum, Soluble on DI Extract	3.6	1.0	ug/l	1	10/24/13 11:45	
Nickel, Soluble on DI Extract	13	2.0	ug/l	1	10/24/13 11:45	
Selenium, Soluble on DI Extract	ND	2.0	ug/l	1	10/24/13 11:45	
Silver, Soluble on DI Extract	ND	0.50	ug/l	1	10/23/13 19:41	
Thallium, Soluble on DI Extract	ND	0.50	ug/l	1	10/23/13 19:41	
Vanadium, Soluble on DI Extract	ND	5.0	ug/l	1	10/24/13 11:45	
Zinc, Soluble on DI Extract	ND	10	ug/l	1	10/24/13 11:45	
Method: EPA 7470A	Batch: W3J0870	F	Prepared: 10/	/16/13 14	4:12	Analyst: svm
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier
Mercury, Soluble on DI Extract	ND	0.10	ug/l	1	10/17/13 16:09	
	Metals (Non-Aqueous) by E	:PA 6000/7000 Seri	es Method	s		
Method: EPA 7196A	Batch: W3J0884	F	Prepared: 10/	/14/13 1	1:15	Analyst: atl
Analyte	Result	MRL	Units	Dil	Analyzed	Qualifier

O-04

10/16/13 18:08

0.010

mg/l

0.060

Analytical Laboratory Service - Since 1964

AWN Consulting Ltd
The Tecpro Building, Clonshaugh Business & Technolog
Dublin IRELAND, 17

Date Received: 10/02/13 09:00 **Date Reported:** 11/21/13 09:34

QUALITY CONTROL SECTION

Date Received: 10/02/13 09:00 Date Reported: 11/21/13 09:34

Anions in solids by EPA 9056/300.0 - Quality Control

Datcii	VV3JU040	- CFA	9036A

		Reporting		Spike	Source		% REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Blank (W3J0646-BLK1)				Analyzed	10/12/13	12:55				
Chloride, Water Leachable	ND	5.0	mg/kg							
Fluoride, Water Leachable	ND	1.0	mg/kg							
Sulfate as S, Water Leachable	ND	5.0	mg/kg							
LCS (W3J0646-BS1)				Analyzed:	10/12/13	12:55				
Chloride, Water Leachable	37.7	5.0	mg/kg	39.9		95	90-110			
Fluoride, Water Leachable	20.7	1.0	mg/kg	20.0		104	90-110			
Sulfate as S, Water Leachable	78.9	5.0	mg/kg	79.8		99	90-110			
Matrix Spike (W3J0646-MS1)	Source	e: 3J0207	8-01	Analyzed:	10/12/13	12:55				
Chloride, Water Leachable	37.3	5.0	mg/kg	39.6	ND	94	31-160			
Fluoride, Water Leachable	18.9	1.0	mg/kg	19.8	0.842	91	0.1-134			
Sulfate as S, Water Leachable	87.1	5.0	mg/kg	79.2	8.45	99	5-159			
Matrix Spike Dup (W3J0646-MSD1)	Source	e: 3J0207	8-01	Analyzed:	10/12/13	12:55				
Chloride, Water Leachable	37.5	5.0	mg/kg	39.7	ND	94	31-160	0.4	20	
Fluoride, Water Leachable	18.9	1.0	mg/kg	19.8	0.842	91	0.1-134	0.3	20	
Sulfate as S, Water Leachable	87.1	5.0	mg/kg	79.3	8.45	99	5-159	0.02	20	

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods - Quality Control

Batch W3J0423 - EPA 9045C	Batch	W3J0423	- EPA 9045	С
---------------------------	-------	---------	------------	---

Analyte	Reporting Result Limit	l Units	Spike Level	Source Result	%REC	% REC Limits	RPD	RPD Limit	Data Qualifiers
	resuit =	Office			701 \L O				
LCS (W3J0423-BS1)			Analyzed	10/09/13	14:14				
pH	6.86	Units	6.86		100	95-105			
Duplicate (W3J0423-DUP1)	Source: 3J020	78-07	Analyzed	10/09/13	14:14				
pH	11.4	Units		11.3			0.4	15	
Batch W3J0699 - EPA 9045C									
	Reporting		Spike	Source		% REC		RPD	Data
Analyte	Result Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
LCS (W3J0699-BS1)			Analyzed	: 10/14/13	13:51				
pH	6.88	Units	6.86		100	95-105			
Duplicate (W3J0699-DUP1)	Source: 3J020	78-11	Analyzed	10/14/13	13:51				
pH	10.0	Units		9.98			0.2	15	

Metals (Aqueous) by EPA 6000/7000 Series Methods - Quality Control

Batch W3J0426 - EPA 7470A

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	% REC Limits	RPD	RPD Limit	Data Qualifiers
Blank (W3J0426-BLK1)				Analyzed:	10/16/13	15:53				
Mercury, Soluble on DI Extract	ND	0.10	ug/l							
LCS (W3J0426-BS1)				Analyzed:	10/16/13	15:53				

Date Received: 10/02/13 09:00 **Date Reported:** 11/21/13 09:34

Metals (Aqueous) by EPA 6000/7000 Series Methods - Quality Control

		Reporting		Spike	Source		% REC		RPD	Dat
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Mercury, Soluble on DI Extract	1.07	0.10	ug/l	1.00		107	80-120			
Matrix Spike (W3J0426-MS1)	Sourc	e: 3J02078	-02	Analyzed:	10/16/13	15:53				
Mercury, Soluble on DI Extract	1.06	0.10	ug/l	1.00	ND	106	70-127			
Matrix Spike Dup (W3J0426-MSD1)	Sourc	e: 3J02078	•	Analyzed:	10/16/13	15:53				
Mercury, Soluble on DI Extract	1.08	0.10	ug/l	1.00	ND	108	70-127	2	20	
Batch W3J0427 - EPA 6010B										
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	% REC Limits	RPD	RPD Limit	Data Qualifiers
Blank (W3J0427-BLK1)				Analyzed:	: 10/11/13	15:37				
Aluminum, Soluble on DI extract	ND	0.050	mg/l							
Iron, Soluble on DI Extract	ND	0.020	mg/l							
LCS (W3J0427-BS1)				Analyzed:	10/11/13	15:40				
Aluminum, Soluble on DI extract	0.997	0.050	mg/l	1.00		100	80-120			
Iron, Soluble on DI Extract	1.00	0.020	mg/l	1.00		100	80-120			
Matrix Spike (W3J0427-MS1)	Sourc	e: 3J02078	-08	Analyzed:	10/11/13	15:58				
Aluminum, Soluble on DI extract	4.83	0.050	mg/l	1.00	3.95	88	75-125			
Iron, Soluble on DI Extract	0.999	0.020	mg/l	1.00	ND	100	75-125			
Matrix Spike Dup (W3J0427-MSD1)	Sourc	e: 3J02078	-08	Analyzed:	10/11/13	16:01				
Aluminum, Soluble on DI extract	4.86	0.050	mg/l	1.00	3.95	90	75-125	0.5	20	
Iron, Soluble on DI Extract	0.999	0.020	mg/l	1.00	ND	100	75-125	0.01	20	
Batch W3J0429 - EPA 6020A										
		Reporting		Spike	Source		% REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Blank (W3J0429-BLK1)				Analyzed:	10/14/13	22:46				
Antimony, Soluble on DI Extract	ND	5.0	ug/l							
Arsenic, Soluble on DI Extract	ND	2.0	ug/l							
Barium, Soluble on DI Extract	ND	0.50	ug/l							
Beryllium, Soluble on DI Extract	ND	0.30	ug/l							
Cadmium, Soluble on DI Extract	ND	0.50	ug/l							
Chromium, Soluble on DI Extract	ND	4.0	ug/l							
Cobalt, Soluble on DI Extract	ND	0.20	ug/l							
Copper, Soluble on DI Extract	ND	2.0	ug/l							
Lead, Soluble on DI Extract	ND	1.0	ug/l							
Molybdenum, Soluble on DI Extract	ND	1.0	ug/l							
Nickel, Soluble on DI Extract	ND	2.0	ug/l							
Selenium, Soluble on DI Extract	ND	2.0	ug/l							
Silver, Soluble on DI Extract	ND	0.50	ug/l							
Thallium, Soluble on DI Extract	ND	0.50	ug/l							
Vanadium, Soluble on DI Extract	ND	5.0	ug/l							
Zinc, Soluble on DI Extract	ND	10	ug/l		4044 ****	00 =6				
LCS (W3J0429-BS1)				Analyzed:	10/14/13	22:53				
			//	F0 0		0.4	00 400			
Antimony, Soluble on DI Extract Arsenic, Soluble on DI Extract	47.2 46.0	5.0 2.0	ug/l ug/l	50.0 50.0		94 92	80-120 80-120			

Date Received: 10/02/13 09:00 **Date Reported:** 11/21/13 09:34

Metals (Aqueous) by EPA 6000/7000 Series Methods - Quality Control

Batch W3J0429 - EPA 6020A

		Reporting		Spike	Source		% REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
LCS (W3J0429-BS1)				Analyzed	10/14/13	22:53				
Barium, Soluble on DI Extract	48.2	0.50	ug/l	50.0		96	80-120			
Beryllium, Soluble on DI Extract	56.4	0.30	ug/l	50.0		113	80-120			
Cadmium, Soluble on DI Extract	47.2	0.50	ug/l	50.0		94	80-120			
Chromium, Soluble on DI Extract	46.3	4.0	ug/l	50.0		93	80-120			
Cobalt, Soluble on DI Extract	47.8	0.20	ug/l	50.0		96	80-120			
Copper, Soluble on DI Extract	48.6	2.0	ug/l	50.0		97	80-120			
Lead, Soluble on DI Extract	48.0	1.0	ug/l	50.0		96	80-120			
Molybdenum, Soluble on DI Extract	47.4	1.0	ug/l	50.0		95	80-120			
Nickel, Soluble on DI Extract	46.2	2.0	ug/l	50.0		92	80-120			
Selenium, Soluble on DI Extract	43.6	2.0	ug/l	50.0		87	80-120			
Silver, Soluble on DI Extract	48.5	0.50	ug/l	50.0		97	80-120			
Thallium, Soluble on DI Extract	47.5	0.50	ug/l	50.0		95	80-120			
Vanadium, Soluble on DI Extract	46.2	5.0	ug/l	50.0		92	80-120			
Zinc, Soluble on DI Extract	44.5	10	ug/l	50.0		89	80-120			
Matrix Spike (W3J0429-MS1)	Source	e: 3J02078	-	Analyzed	10/14/13	23:01				
Antimony, Soluble on DI Extract	46.9	5.0	ug/l	50.0	ND	94	75-125			
Arsenic, Soluble on DI Extract	38.7	2.0	ug/l	50.0	6.20	65	75-125			MS-0
Barium, Soluble on DI Extract	63.7	0.50	ug/l	50.0	14.4	99	75-125			
Beryllium, Soluble on DI Extract	44.8	0.30	ug/l	50.0	ND	90	75-125			
Cadmium, Soluble on DI Extract	44.5	0.50	ug/l	50.0	ND	89	75-125			
Chromium, Soluble on DI Extract	49.4	4.0	ug/l	50.0	0.0945	99	75-125			
Cobalt, Soluble on DI Extract	45.9	0.20	ug/l	50.0	1.17	90	75-125			
Copper, Soluble on DI Extract	42.2	2.0	ug/l	50.0	1.66	81	75-125			
Lead, Soluble on DI Extract	43.5	1.0	ug/l	50.0	ND	87	75-125			
Molybdenum, Soluble on DI Extract	54.5	1.0	ug/l	50.0	0.825	107	75-125			
Nickel, Soluble on DI Extract	49.4	2.0	ug/l	50.0	6.29	86	75-125			
Selenium, Soluble on DI Extract	55.2	2.0	ug/l	50.0	1.52	107	75-125			
Silver, Soluble on DI Extract	46.1	0.50	ug/l	50.0	ND	92	75-125			
Thallium, Soluble on DI Extract	44.5	0.50	ug/l	50.0	ND	89	75-125			
Vanadium, Soluble on DI Extract	50.8	5.0	ug/l	50.0	ND	102	75-125			
Zinc, Soluble on DI Extract	37.1	10	ug/l	50.0	ND	74	75-125			MS-0
Matrix Spike Dup (W3J0429-MSD1)		e: 3J02078	•		10/14/13					
Antimony, Soluble on DI Extract	45.3	5.0	ug/l	50.0	ND	91	75-125	3	20	
Arsenic, Soluble on DI Extract	40.1	2.0	ug/l	50.0	6.20	68	75-125	4	20	MS-0
Barium, Soluble on DI Extract	61.3	0.50	ug/l	50.0	14.4	94	75-125	4	20	
Beryllium, Soluble on DI Extract	48.4	0.30	ug/l	50.0	ND	97	75-125	8	20	
Cadmium, Soluble on DI Extract	43.4	0.50	ug/l	50.0	ND	87	75-125	2	20	
Chromium, Soluble on DI Extract	49.1	4.0	ug/l	50.0	0.0945	98	75-125	0.5	20	
Cobalt, Soluble on DI Extract	46.8	0.20	ug/l	50.0	1.17	91	75-125	2	20	
Copper, Soluble on DI Extract	42.1	2.0	ug/l	50.0	1.66	81	75-125	0.09	20	
Lead, Soluble on DI Extract	42.8	1.0	ug/l	50.0	ND	86	75-125	2	20	
Molybdenum, Soluble on DI Extract	54.7	1.0	ug/l	50.0	0.825	108	75-125	0.3	20	
Nickel, Soluble on DI Extract	49.8	2.0	ug/l	50.0	6.29	87	75-125	0.8	20	
Selenium, Soluble on DI Extract	51.1	2.0	ug/l	50.0	1.52	99	75-125	8	20	

Date Received: 10/02/13 09:00 **Date Reported:** 11/21/13 09:34

Metals (Aqueous) by EPA 6000/7000 Series Methods - Quality Control

		Reporting		Spike	Source		% REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Matrix Spike Dup (W3J0429-MSD1)	Sourc	e: 3J02078	-04	Analyzed:	10/16/13	16:15				
Silver, Soluble on DI Extract	47.3	0.50	ug/l	50.0	ND	95	75-125	3	20	
Thallium, Soluble on DI Extract	43.9	0.50	ug/l	50.0	ND	88	75-125	1	20	
Vanadium, Soluble on DI Extract	50.7	5.0	ug/l	50.0	ND	101	75-125	0.3	20	
Zinc, Soluble on DI Extract	36.9	10	ug/l	50.0	ND	74	75-125	0.5	20	MS-0
Post Spike (W3J0429-PS1)	Sourc	e: 3J02078	-04	Analyzed:	10/15/13	15:05				
Arsenic, Soluble on DI Extract	40.1		ug/l	50.0	1.24	78	80-120			MS-0
Zinc, Soluble on DI Extract	42.7		ug/l	50.0	0.0174	85	80-120			
Post Spike (W3J0429-PS2)	Sourc	e: 3J02078	-04	Analyzed:	10/15/13	15:13				
Arsenic, Soluble on DI Extract	43.2		ug/l	50.0	1.24	84	80-120			
Zinc, Soluble on DI Extract	42.8		ug/l	50.0	0.0174	86	80-120			
Batch W3J0868 - EPA 6010B			<u> </u>							
		Reporting		Spike	Source		% REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Blank (W3J0868-BLK1)				Analyzed:	10/17/13	11:41				
Aluminum, Soluble on DI extract	ND	0.050	mg/l							
Iron, Soluble on DI Extract	ND	0.020	mg/l							
LCS (W3J0868-BS1)				Analyzed:	10/17/13	11:43				
Aluminum, Soluble on DI extract	0.954	0.050	mg/l	1.00		95	80-120			
Iron, Soluble on DI Extract	1.02	0.020	mg/l	1.00		102	80-120			
Matrix Spike (W3J0868-MS1)	Sourc	e: 3J02078	-12	Analyzed:	10/17/13	11:50				
Aluminum, Soluble on DI extract	2.68	0.050	mg/l	2.00	0.471	110	75-125			
Iron, Soluble on DI Extract	2.12	0.020	mg/l	2.00	0.0444	104	75-125			
Matrix Spike Dup (W3J0868-MSD1)	Sourc	e: 3J02078	-12	Analyzed:	10/17/13	11:52				
Aluminum, Soluble on DI extract	2.63	0.050	mg/l	2.00	0.471	108	75-125	2	20	
Iron, Soluble on DI Extract	2.11	0.020	mg/l	2.00	0.0444	103	75-125	0.8	20	
Batch W3J0869 - EPA 6020A										
		Reporting		Spike	Source		% REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Blank (W3J0869-BLK1)				Analyzed:	10/23/13	18:54				
Antimony, Soluble on DI Extract	ND	5.0	ug/l							
Arsenic, Soluble on DI Extract	ND	2.0	ug/l							
Barium, Soluble on DI Extract	ND	0.50	ug/l							
Beryllium, Soluble on DI Extract	ND	0.30	ug/l							
Cadmium, Soluble on DI Extract	ND	0.50	ug/l							
Chromium, Soluble on DI Extract	ND	4.0	ug/l							
Cobalt, Soluble on DI Extract	ND	0.20	ug/l							
Copper, Soluble on DI Extract	ND	2.0	ug/l							
Lead, Soluble on DI Extract	ND	1.0	ug/l							
Molybdenum, Soluble on DI Extract	ND	1.0	ug/l							
Nickel, Soluble on DI Extract	ND	2.0	ug/l							
Selenium, Soluble on DI Extract	ND	2.0	ug/l							
Silver, Soluble on DI Extract	ND	0.50	ug/l							

Date Received: 10/02/13 09:00 **Date Reported:** 11/21/13 09:34

Metals (Aqueous) by EPA 6000/7000 Series Methods - Quality Control

Batch W3J0869 - EPA 6020A

		Reporting		Spike	Source		% REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Blank (W3J0869-BLK1)				Analyzed:	10/23/13	18:54				
Thallium, Soluble on DI Extract	ND	0.50	ug/l							
Vanadium, Soluble on DI Extract	ND	5.0	ug/l							
Zinc, Soluble on DI Extract	ND	10	ug/l							
LCS (W3J0869-BS1)				Analyzed:	10/23/13	19:02				
Antimony, Soluble on DI Extract	48.5	5.0	ug/l	50.0		97	80-120			
Arsenic, Soluble on DI Extract	41.3	2.0	ug/l	50.0		83	80-120			
Barium, Soluble on DI Extract	51.2	0.50	ug/l	50.0		102	80-120			
Beryllium, Soluble on DI Extract	53.4	0.30	ug/l	50.0		107	80-120			
Cadmium, Soluble on DI Extract	49.1	0.50	ug/l	50.0		98	80-120			
Chromium, Soluble on DI Extract	47.2	4.0	ug/l	50.0		94	80-120			
Cobalt, Soluble on DI Extract	51.0	0.20	ug/l	50.0		102	80-120			
Copper, Soluble on DI Extract	54.7	2.0	ug/l	50.0		109	80-120			
Lead, Soluble on DI Extract	50.1	1.0	ug/l	50.0		100	80-120			
Molybdenum, Soluble on DI Extract	51.8	1.0	ug/l	50.0		104	80-120			
Nickel, Soluble on DI Extract	53.0	2.0	ug/l	50.0		106	80-120			
Selenium, Soluble on DI Extract	50.7	2.0	ug/l	50.0		101	80-120			
Silver, Soluble on DI Extract	54.5	0.50	ug/l	50.0		109	80-120			
Thallium, Soluble on DI Extract	49.0	0.50	ug/l	50.0		98	80-120			
Vanadium, Soluble on DI Extract	49.3	5.0	ug/l	50.0		99	80-120			
Zinc, Soluble on DI Extract	47.7	10	ug/l	50.0		95	80-120			
Matrix Spike (W3J0869-MS1)		e: 3J02078-	•		10/23/13		00 .20			
Antimony, Soluble on DI Extract	46.0	25	ug/l	50.0	ND	92	75-125			
Arsenic, Soluble on DI Extract	40.9	10	ug/l	50.0	4.42	73	75-125			MS-0
Barium, Soluble on DI Extract	4770	2.5	ug/l	50.0	4680	191	75-125			MS-0
Beryllium, Soluble on DI Extract	43.1	1.5	ug/l	50.0	ND	86	75-125			
Cadmium, Soluble on DI Extract	46.6	2.5	ug/l	50.0	0.119	93	75-125			
Chromium, Soluble on DI Extract	70.6	20	ug/l	50.0	25.3	91	75-125			
Cobalt, Soluble on DI Extract	51.1	1.0	ug/l	50.0	2.41	97	75-125			
Copper, Soluble on DI Extract	52.8	10	ug/l	50.0	4.37	97	75-125			
Lead, Soluble on DI Extract	49.3	5.0	ug/l	50.0	2.97	93	75-125			
Molybdenum, Soluble on DI Extract	56.3	5.0	ug/l	50.0	3.65	105	75-125			
Nickel, Soluble on DI Extract	59.2	10	ug/l	50.0	13.0	92	75-125 75-125			
Selenium, Soluble on DI Extract	42.7	10	ug/l	50.0	1.65	82	75-125			
Silver, Soluble on DI Extract	47.6	2.5	ug/l	50.0	ND	95	75-125			
Thallium, Soluble on DI Extract	46.0	2.5	ug/l	50.0	ND	92	75-125 75-125			
Vanadium, Soluble on DI Extract	47.8	25	ug/l	50.0	ND	96	75-125 75-125			
Zinc, Soluble on DI Extract	42.9	50	ug/l	50.0	1.73	82	75-125 75-125			
Matrix Spike Dup (W3J0869-MSD1)		9: 3J02078 -	_		10/23/13		75-125			
<u> </u>							75 105	2	20	
Antimony, Soluble on DI Extract	47.6	25	ug/l	50.0	ND	95 72	75-125	3		MS-0
Arsenic, Soluble on DI Extract	40.2	10	ug/l	50.0	4.42	72 542	75-125	2	20	
Barium, Soluble on DI Extract	4950	2.5	ug/l	50.0	4680	542	75-125	4	20 20	MS-0
Damillium Calubla an DI Fister of								.,		
Beryllium, Soluble on DI Extract Cadmium, Soluble on DI Extract	44.2 47.9	1.5 2.5	ug/l ug/l	50.0 50.0	ND 0.119	88 96	75-125 75-125	2 3	20	

Date Received: 10/02/13 09:00 **Date Reported:** 11/21/13 09:34

20

3

Metals (Aqueous) by EPA 6000/7000 Series Methods - Quality Control

		Reporting		Spike	Source		% REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Matrix Spike Dup (W3J0869-MSD1)	Source	e: 3J02078	3-12	Analyzed	10/23/13	19:18				
Cobalt, Soluble on DI Extract	52.4	1.0	ug/l	50.0	2.41	100	75-125	3	20	
Copper, Soluble on DI Extract	53.9	10	ug/l	50.0	4.37	99	75-125	2	20	
Lead, Soluble on DI Extract	50.4	5.0	ug/l	50.0	2.97	95	75-125	2	20	
Molybdenum, Soluble on DI Extract	57.3	5.0	ug/l	50.0	3.65	107	75-125	2	20	
Nickel, Soluble on DI Extract	61.7	10	ug/l	50.0	13.0	97	75-125	4	20	
Selenium, Soluble on DI Extract	50.5	10	ug/l	50.0	1.65	98	75-125	17	20	
Silver, Soluble on DI Extract	47.8	2.5	ug/l	50.0	ND	96	75-125	0.4	20	
Thallium, Soluble on DI Extract	46.8	2.5	ug/l	50.0	ND	94	75-125	2	20	
Vanadium, Soluble on DI Extract	50.8	25	ug/l	50.0	ND	102	75-125	6	20	
Zinc, Soluble on DI Extract	47.6	50	ug/l	50.0	1.73	92	75-125	11	20	
Post Spike (W3J0869-PS1)	Source	e: 3J02078	3-12	Analyzed	10/23/13	19:26				
Arsenic, Soluble on DI Extract	38.5		ug/l	50.0	0.884	75	80-120			MS-01
Post Spike (W3J0869-PS2)	Source	e: 3J02078	3-12	Analyzed:	10/23/13	19:33				
Arsenic, Soluble on DI Extract	38.2		ug/l	50.0	0.884	75	80-120			MS-01
Batch W3J0870 - EPA 7470A										
		Reporting		Spike	Source		% REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Blank (W3J0870-BLK1)				Analyzed	10/17/13	16:09				
Mercury, Soluble on DI Extract	ND	0.10	ug/l							
LCS (W3J0870-BS1)			_	Analyzed:	10/17/13	16:09				
Mercury, Soluble on DI Extract	1.06	0.10	ug/l	1.00		106	80-120			
Matrix Spike (W3J0870-MS1)	Source	e: 3J02078	Ū	Analyzed	10/17/13	16:09				
Mercury, Soluble on DI Extract	1.83	0.10	ug/l	2.00	ND	92	70-127			
//			3							

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods - Quality Control

ug/l

Analyzed: 10/17/13 16:09

ND

89

70-127

2.00

Source: 3J02078-12

0.10

1.78

Batch W3J0355 - EPA 7471A

Matrix Spike Dup (W3J0870-MSD1)

Mercury, Soluble on DI Extract

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	% REC Limits	RPD	RPD Limit	Data Qualifiers
Blank (W3J0355-BLK1)				Analyzed:	10/10/13	15:24				
Mercury, Total	ND	10	ug/kg							
LCS (W3J0355-BS1)				Analyzed:	10/10/13	15:24				
Mercury, Total	90.0	10	ug/kg	83.3		108	80-120			
Matrix Spike (W3J0355-MS1)	Source	e: 3J02078	-07	Analyzed:	10/10/13	15:24				
Mercury, Total	57.6	10	ug/kg	76.3	ND	75	47-138			
Matrix Spike Dup (W3J0355-MSD1)	Source	e: 3J02078	-07	Analyzed:	10/10/13	15:24				
Mercury, Total	59.9	10	ug/kg	78.5	ND	76	47-138	4	20	
Batch W3J0418 - EPA 6010B										

Date Received: 10/02/13 09:00 **Date Reported:** 11/21/13 09:34

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods - Quality Control

Batch W3J0418 - EPA 6010B

		Reporting		Spike	Source		% REC		RPD	Dat
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Blank (W3J0418-BLK1)				Analyzed:	10/10/13	13:36				
Aluminum, Total	ND	5.0	mg/kg							
Antimony, Total	ND	2.0	mg/kg							
Arsenic, Total	ND	1.0	mg/kg							
Barium, Total	ND	2.0	mg/kg							
Beryllium, Total	ND	0.50	mg/kg							
Cadmium, Total	ND	0.50	mg/kg							
Chromium, Total	ND	1.0	mg/kg							
Cobalt, Total	ND	1.0	mg/kg							
Copper, Total	ND	5.0	mg/kg							
Iron, Total	ND	5.0	mg/kg							
Lead, Total	ND	1.0	mg/kg							
Manganese, Total	ND	1.0	mg/kg							
Nickel, Total	ND	2.0	mg/kg							
Phosphorus, Total	ND	2.5	mg/kg							
Selenium, Total	ND	1.0	mg/kg							
Thallium, Total	ND	3.0	mg/kg							
Titanium, Total	ND	1.0	mg/kg							
Vanadium, Total	ND	1.0	mg/kg							
Zinc, Total	ND	5.0	mg/kg							
LCS (W3J0418-BS1)			0 0	Analyzed:	10/10/13	13:39				
Aluminum, Total	48.8	5.0	mg/kg	50.0		98	80-120			
Antimony, Total	50.5	2.0	mg/kg	50.0		101	80-120			
Arsenic, Total	51.7	1.0	mg/kg	50.0		103	80-120			
Barium, Total	51.7	2.0	mg/kg	50.0		103	80-120			
Beryllium, Total	48.5	0.50	mg/kg	50.0		97	80-120			
Cadmium, Total	49.8	0.50	mg/kg	50.0		100	80-120			
Chromium, Total	52.5	1.0	mg/kg	50.0		105	80-120			
Cobalt, Total	49.6	1.0	mg/kg	50.0		99	80-120			
Copper, Total	49.8	5.0	mg/kg	50.0		100	80-120			
Iron, Total	52.6	5.0	mg/kg	50.0		105	80-120			
Lead, Total	50.1	1.0	mg/kg	50.0		100	80-120			
Manganese, Total	52.4	1.0	mg/kg	50.0		105	80-120			
Nickel, Total	51.7	2.0	mg/kg	50.0		103	80-120			
Phosphorus, Total	48.3	2.5	mg/kg	50.0		97	80-120			
Selenium, Total	48.6	1.0	mg/kg	50.0		97	80-120			
Thallium, Total	47.5	3.0	mg/kg	50.0		95	80-120			
Titanium, Total	52.7	1.0	mg/kg	50.0		105	80-120			
Vanadium, Total	53.9	1.0	mg/kg	50.0		108	80-120			
Zinc, Total	48.5	5.0	mg/kg	50.0		97	80-120			
Matrix Spike (W3J0418-MS1)		e: 3J02096		Analyzed:	10/10/13		00 120			
Aluminum, Total	19700	5.0	mg/kg	46.0	20100	NR	75-125			MS-0
Antimony, Total	21.2	2.0	mg/kg	46.0	1.87	42	75-125			MS-0
Arsenic, Total	79.0	1.0	mg/kg	46.0	26.2	115	75-125			
, 11001110, 10101	7 5.0	1.0	1119/119	-70.0	20.2		10 120			

Date Received: 10/02/13 09:00 **Date Reported:** 11/21/13 09:34

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods - Quality Control

Batch W3J0418 - EPA 6010B

		Reporting		Spike	Source		% REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Matrix Spike (W3J0418-MS1)	Sourc	e: 3J0209	6-01	Analyzed	10/10/13	13:56				
Beryllium, Total	43.6	0.50	mg/kg	46.0	0.340	94	75-125			
Cadmium, Total	38.5	0.50	mg/kg	46.0	1.09	81	75-125			
Chromium, Total	190	1.0	mg/kg	46.0	152	83	75-125			
Cobalt, Total	39.1	1.0	mg/kg	46.0	4.31	76	75-125			
Copper, Total	80.5	5.0	mg/kg	46.0	33.5	102	75-125			
Iron, Total	17000	5.0	mg/kg	46.0	28400	NR	75-125			MS-0
Lead, Total	71.0	1.0	mg/kg	46.0	35.5	77	75-125			
Manganese, Total	914	1.0	mg/kg	46.0	903	24	75-125			MS-0
Nickel, Total	49.0	2.0	mg/kg	46.0	12.1	80	75-125			
Phosphorus, Total	924	2.3	mg/kg	46.0	896	62	75-125			MS-0
Selenium, Total	47.5	1.0	mg/kg	46.0	ND	103	75-125			
Thallium, Total	2.19	3.0	mg/kg	46.0	ND	5	75-125			MS-0
Titanium, Total	983	1.0	mg/kg	46.0	1110	NR	75-125			MS-0
Vanadium, Total	95.6	1.0	mg/kg	46.0	52.3	94	75-125			
Zinc, Total	111	5.0	mg/kg	46.0	76.9	74	75-125			MS-0
Matrix Spike Dup (W3J0418-MSD1)		e: 3J0209			10/10/13	13:59				
Aluminum, Total	19600	5.0	mg/kg	49.5	20100	NR	75-125	0.9	20	MS-0
Antimony, Total	23.7	2.0	mg/kg	49.5	1.87	44	75-125	11	20	MS-0
Arsenic, Total	83.2	1.0	mg/kg	49.5	26.2	115	75-125	5	20	
Barium, Total	127	2.0	mg/kg	49.5	86.3	82	75-125	2	20	
Beryllium, Total	47.1	0.50	mg/kg	49.5	0.340	94	75-125	8	20	
Cadmium, Total	42.1	0.50	mg/kg	49.5	1.09	83	75-125	9	20	
Chromium, Total	192	1.0	mg/kg	49.5	152	81	75-125	1	20	
Cobalt, Total	42.2	1.0	mg/kg	49.5	4.31	76	75-125	7	20	
Copper, Total	83.0	5.0	mg/kg	49.5	33.5	100	75-125	3	20	
Iron, Total	17400	5.0	mg/kg	49.5	28400	NR	75-125	2	20	MS-0
Lead, Total	74.1	1.0	mg/kg	49.5	35.5	78	75-125	4	20	
Manganese, Total	921	1.0	mg/kg	49.5	903	36	75-125	0.7	20	MS-0
Nickel, Total	52.3	2.0	mg/kg	49.5	12.1	81	75-125	7	20	
Phosphorus, Total	922	2.5	mg/kg	49.5	896	52	75-125	0.3	20	MS-0
Selenium, Total	53.0	1.0	mg/kg	49.5	ND	107	75-125	11	20	
Thallium, Total	2.77	3.0	mg/kg	49.5	ND	6	75-125	24	20	MS-0
Titanium, Total	1040	1.0	mg/kg	49.5	1110	NR	75-125	6	20	MS-0
Vanadium, Total	98.7	1.0	mg/kg	49.5	52.3	94	75-125	3	20	
Zinc, Total	115	5.0	mg/kg	49.5	76.9	76	75-125	3	20	
Post Spike (W3J0418-PS1)	Sourc	e: 3J0209		Analyzed	10/10/13					
Antimony, Total	1.01		mg/l	1.00	0.00382	101	80-125			
Thallium, Total	0.789		mg/l	1.00	-0.0670	86	80-125			
Post Spike (W3J0418-PS2)	Sourc	e: 3J0209	6-01	Analyzed	10/10/13	14:03				
Antimony, Total	0.993		mg/l	1.00	0.00382	99	80-125			
Thallium, Total	0.772		mg/l	1.00	-0.0670	84	80-125			
Batch W3J0613 - EPA 7196A										

Date Received: 10/02/13 09:00 **Date Reported:** 11/21/13 09:34

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods - Quality Control

Batch W3J0613 - EPA 7196A										
		Reporting		Spike	Source		% REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Blank (W3J0613-BLK1)				Analyzed:	10/22/13	15:47				
Chromium 6+	ND	1.0	mg/kg							
LCS (W3J0613-BS1)			0 0	Analyzed:	10/22/13	15:47				
Chromium 6+	6.83	1.0	mg/kg	8.00		85	80-120			
Matrix Spike (W3J0613-MS1)	Source	e: 3J02096	6-01	Analyzed:	10/22/13	15:47				
Chromium 6+	56.9	2.0	mg/kg	7.96	35.6	268	75-125			MS-02
Matrix Spike Dup (W3J0613-MSD1)	Sourc	e: 3J02096	6-01	Analyzed:	10/22/13	15:47				
Chromium 6+	57.5	2.0	mg/kg	7.93	35.6	277	75-125	1	20	MS-02
Batch W3J0679 - EPA 7471A										
		Reporting		Spike	Source		% REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Blank (W3J0679-BLK1)				Analyzed:	10/14/13	16:00				
Mercury, Total	ND	10	ug/kg	7 thury 200.	10/14/10	10.00				
LCS (W3J0679-BS1)	ND	10	ug/kg	Analyzed:	10/14/13	16:00				
Mercury, Total	90.8	10	ua/ka	83.3	10/14/10	109	80-120			
Matrix Spike (W3J0679-MS1)		e: 3J04005	ug/kg ร ูก จ		10/14/13		00-120			
Mercury, Total	78.1	10	ug/kg	77.3	4.73	95	47-138			
Matrix Spike Dup (W3J0679-MSD1)		e: 3J04005	0 0		10/14/13		47-130			
Mercury, Total	78.3	10	ug/kg	78.7	4.73	93	47-138	0.3	20	
Batch W3J0884 - EPA 7196A	70.5	10	ug/kg	70.7	4.73	93	47-130	0.5	20	
246.1.1000001 2171.10071		Reporting		Spike	Source		% REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Blank (W3J0884-BLK1)				Analyzed:	10/16/13	18:08				
Chromium 6+, Soluble on DI Extract	ND	0.010	mg/l							
LCS (W3J0884-BS1)				Analyzed:	10/16/13	18:08				
Chromium 6+, Soluble on DI Extract	0.208	0.010	mg/l	0.200		104	89-110			
Matrix Spike (W3J0884-MS1)	Sourc	e: 3J02078	3-02	Analyzed:	10/16/13	18:08				
Chromium 6+, Soluble on DI Extract	0.196	0.010	mg/l	0.200	ND	98	70-130			
Matrix Spike Dup (W3J0884-MSD1)	Sourc	e: 3J02078	3-02	Analyzed:	10/16/13	18:08				
Chromium 6+, Soluble on DI Extract	0.196	0.010	mg/l	0.200	ND	98	70-130	0.1	15	
Batch W3J0903 - EPA 6010B										
		Reporting		Spike	Source		% REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Blank (W3J0903-BLK1)				Analyzed:	10/17/13	14:55				
Aluminum, Total	ND	5.0	mg/kg							
Antimony, Total	ND	2.0	mg/kg							
Arsenic, Total	ND	1.0	mg/kg							
Barium, Total	ND	2.0	mg/kg							
	ND	0.50	mg/kg							
Beryllium, Total	110	0.00	99							
Beryllium, Total Cadmium, Total	ND	0.50	mg/kg							

Date Received: 10/02/13 09:00 **Date Reported:** 11/21/13 09:34

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods - Quality Control

Batch W3J0903 - EPA 6010B

		Reporting		Spike	Source		% REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Blank (W3J0903-BLK1)				Analyzed:	10/17/13	14:55				
Cobalt, Total	ND	1.0	mg/kg							
Copper, Total	ND	5.0	mg/kg							
Iron, Total	ND	5.0	mg/kg							
Lead, Total	ND	1.0	mg/kg							
Manganese, Total	ND	1.0	mg/kg							
Nickel, Total	ND	2.0	mg/kg							
Phosphorus, Total	ND	2.5	mg/kg							
Selenium, Total	ND	1.0	mg/kg							
Thallium, Total	ND	3.0	mg/kg							
Titanium, Total	ND	1.0	mg/kg							
Vanadium, Total	ND	1.0	mg/kg							
Zinc, Total	ND	5.0	mg/kg							
LCS (W3J0903-BS1)			0 0	Analyzed:	10/17/13	14:57				
Aluminum, Total	49.3	5.0	mg/kg	50.0		99	80-120			
Antimony, Total	48.1	2.0	mg/kg	50.0		96	80-120			
Arsenic, Total	50.1	1.0	mg/kg	50.0		100	80-120			
Barium, Total	49.1	2.0	mg/kg	50.0		98	80-120			
Beryllium, Total	47.8	0.50	mg/kg	50.0		96	80-120			
Cadmium, Total	47.3	0.50	mg/kg	50.0		95	80-120			
Chromium, Total	48.0	1.0	mg/kg	50.0		96	80-120			
Cobalt, Total	44.6	1.0	mg/kg	50.0		89	80-120			
Copper, Total	48.2	5.0	mg/kg	50.0		96	80-120			
Iron, Total	51.2	5.0	mg/kg	50.0		102	80-120			
Lead, Total	48.0	1.0	mg/kg	50.0		96	80-120			
Manganese, Total	49.2	1.0	mg/kg	50.0		98	80-120			
Nickel, Total	47.7	2.0	mg/kg	50.0		96	80-120			
Phosphorus, Total	49.3	2.5	mg/kg	50.0		99	80-120			
Selenium, Total	46.0	1.0	mg/kg	50.0		92	80-120			
Thallium, Total	46.4	3.0	mg/kg	50.0		93	80-120			
	52.2	1.0		50.0		104	80-120			
Titanium, Total			mg/kg				80-120			
Vanadium, Total Zinc, Total	52.7 44.3	1.0 5.0	mg/kg	50.0 50.0		106 89	80-120			
Matrix Spike (W3J0903-MS1)		5.0 e: 3J0207	mg/kg '8-11		10/17/13		00-120			
Aluminum, Total	18200	5.0	mg/kg	46.5	16900	NR	75-125			MS-0
Antimony, Total	13.9	2.0	mg/kg	46.5	2.00	26	75-125 75-125			MS-0
Arsenic, Total	55.1	1.0	mg/kg	46.5	4.40	109	75-125 75-125			IVIO-0
Barium, Total	310	2.0			257	112	75-125 75-125			
			mg/kg	46.5						
Beryllium, Total	42.2	0.50	mg/kg	46.5	0.635	89 77	75-125			
Cadmium, Total	36.2	0.50	mg/kg	46.5	0.521	77 94	75-125			
Chromium, Total	85.2	1.0	mg/kg	46.5	46.1	84	75-125			MO
Cobalt, Total	36.5	1.0	mg/kg	46.5	2.81	72	75-125			MS-0
Copper, Total	57.3	5.0	mg/kg	46.5	10.3	101	75-125			NO 0
Iron, Total	15100	5.0	mg/kg	46.5	19000	NR	75-125			MS-0
Lead, Total	58.3	1.0	mg/kg	46.5	21.7	79	75-125			

Date Received: 10/02/13 09:00 **Date Reported:** 11/21/13 09:34

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods - Quality Control

		6010B

	1	Reporting		Spike	Source		% REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Matrix Spike (W3J0903-MS1)	Source	e: 3J02078	8-11	Analyzed	10/17/13	15:11				
Manganese, Total	706	1.0	mg/kg	46.5	637	150	75-125			MS-02
Nickel, Total	49.4	2.0	mg/kg	46.5	13.5	77	75-125			
Phosphorus, Total	528	2.3	mg/kg	46.5	450	169	75-125			MS-02
Selenium, Total	45.0	1.0	mg/kg	46.5	ND	97	75-125			
Thallium, Total	ND	3.0	mg/kg	46.5	ND	NR	75-125			MS-0
Titanium, Total	975	1.0	mg/kg	46.5	903	154	75-125			MS-02
Vanadium, Total	91.2	1.0	mg/kg	46.5	46.3	97	75-125			
Zinc, Total	94.1	5.0	mg/kg	46.5	60.0	73	75-125			MS-02
Matrix Spike Dup (W3J0903-MSD1)	Source	e: 3J0207	8-11	Analyzed	10/17/13	15:13				
Aluminum, Total	18000	5.0	mg/kg	47.2	16900	NR	75-125	1	20	MS-0
Antimony, Total	13.8	2.0	mg/kg	47.2	2.00	25	75-125	1	20	MS-0
Arsenic, Total	54.5	1.0	mg/kg	47.2	4.40	106	75-125	1	20	
Barium, Total	306	2.0	mg/kg	47.2	257	103	75-125	1	20	
Beryllium, Total	42.0	0.50	mg/kg	47.2	0.635	88	75-125	0.5	20	
Cadmium, Total	36.5	0.50	mg/kg	47.2	0.521	76	75-125	0.9	20	
Chromium, Total	84.2	1.0	mg/kg	47.2	46.1	81	75-125	1	20	
Cobalt, Total	36.3	1.0	mg/kg	47.2	2.81	71	75-125	0.4	20	MS-0
Copper, Total	57.0	5.0	mg/kg	47.2	10.3	99	75-125	0.5	20	
Iron, Total	15000	5.0	mg/kg	47.2	19000	NR	75-125	0.3	20	MS-02
Lead, Total	58.6	1.0	mg/kg	47.2	21.7	78	75-125	0.6	20	
Manganese, Total	684	1.0	mg/kg	47.2	637	101	75-125	3	20	
Nickel, Total	49.2	2.0	mg/kg	47.2	13.5	76	75-125	0.6	20	
Phosphorus, Total	523	2.4	mg/kg	47.2	450	156	75-125	1	20	MS-0
Selenium, Total	45.3	1.0	mg/kg	47.2	ND	96	75-125	0.6	20	
Thallium, Total	ND	3.0	mg/kg	47.2	ND	NR	75-125			MS-0
Titanium, Total	968	1.0	mg/kg	47.2	903	137	75-125	0.7	20	MS-0
Vanadium, Total	90.7	1.0	mg/kg	47.2	46.3	94	75-125	0.6	20	
Zinc, Total	94.2	5.0	mg/kg	47.2	60.0	72	75-125	0.1	20	MS-02
Post Spike (W3J0903-PS1)	Source	e: 3J02078		Analyzed	10/17/13	15:15				
Antimony, Total	0.966		mg/l	1.00	0.00437	96	80-125			
Cobalt, Total	0.855		mg/l	1.00	0.00614	85	80-125			
Thallium, Total	0.805		mg/l	1.00	-0.0833	89	80-125			
Post Spike (W3J0903-PS2)	Source	e: 3J02078	8-11	Analyzed	10/17/13	15:17				
Antimony, Total	1.01		mg/l	1.00	0.00437	101	80-125			
Cobalt, Total	0.881		mg/l	1.00	0.00614	87	80-125			
Thallium, Total	0.827		mg/l	1.00	-0.0833	91	80-125			

Metals - Soluble on STLC by EPA 6000/7000 Methods - Quality Control

Batch W3J0429 - EPA 6020A

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	% REC Limits	RPD	RPD Limit	Data Qualifiers
Blank (W3J0429-BLK1)				Analyzed:	10/16/13	16:08				

Date Received: 10/02/13 09:00 **Date Reported:** 11/21/13 09:34

Metals - Soluble on STLC by EPA 6000/7000 Methods - Quality Control

	Reporting		Spike	Source		% REC		RPD	Data
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
			Analyzed	10/16/13	16:08				
ND	0.0010	mg/l							
			Analyzed:	10/16/13	16:10				
0.0436	0.0010	mg/l				80-120			
Sourc	e: 3J02078	-04	Analyzed:	10/16/13	16:12				
0.0520	0.0010	mg/l		0.00664		75-125			
Sourc	e: 3J02078	-04	Analyzed	10/16/13	16:15				
0.0583	0.0010	mg/l		0.00664		75-125	11	20	
	Reporting		Spike	Source		% REC		RPD	Data
Docult	Limit	Units				Limita			O I:6:
Nesuit		Units	Level	Result	%REC	LIIIIIIS	RPD	Limit	Qualifiers
Nesuit		Units		10/24/13		LIIIIIIS	RPD	Limit	Quaimers
ND	0.0010	mg/l				Limits	RPD	Limit	Quaimers
			Analyzed		11:29	Limits	RPD	Limit	Quaimers
			Analyzed	10/24/13	11:29	80-120	RPD	Limit	Quaimers
ND 0.0552	0.0010	mg/l	Analyzed:	10/24/13	11:29		RPD	Limit	Quaimers
ND 0.0552	0.0010	mg/l	Analyzed:	10/24/13	11:29		KPD	Limit	Quaimers
0.0552 Sourc 0.0588	0.0010 0.0010 ee: 3J02078	mg/l mg/l -12 mg/l	Analyzed: Analyzed:	10/24/13 · 10/24/13 · 10/24/13 ·	11:29 11:33 11:37	80-120	KPD	Limit	Quaimers
	0.0436 Source 0.0520 Source	ND 0.0010 0.0436 0.0010 Source: 3J02078 0.0520 0.0010 Source: 3J02078 0.0583 0.0010 Reporting	ND 0.0010 mg/l	Result Limit Units Level Analyzed: Analyzed: Analyzed: Analyzed: Analyzed: Analyzed: Analyzed: Analyzed: O.0436 O.0010 mg/l Source: 3J02078-04 Analyzed: Analyzed: O.0520 O.0010 mg/l Analyzed: O.0583 O.0010 mg/l Reporting Spike	Result Limit Units Level Result	Result Limit Units Level Result %REC Analyzed: 10/16/13 16:08 ND 0.0010 mg/l Analyzed: 10/16/13 16:10 0.0436 0.0010 mg/l Analyzed: 10/16/13 16:12 0.0520 0.0010 mg/l 0.00664 Source: 3J02078-04 Analyzed: 10/16/13 16:15 0.0583 0.0010 mg/l 0.00664 Reporting Spike Source So	Result Limit Units Level Result %REC Limits Analyzed: 10/16/13 16:08 ND 0.0010 mg/l Analyzed: 10/16/13 16:10 0.0436 0.0010 mg/l 80-120 Source: 3J02078-04 Analyzed: 10/16/13 16:12 0.0520 0.0010 mg/l 0.00664 75-125 Source: 3J02078-04 Analyzed: 10/16/13 16:15 0.0583 0.0010 mg/l 0.00664 75-125 Reporting Spike Source % REC	Result Limit Units Level Result %REC Limits RPD	Result Limit Units Level Result %REC Limits RPD Limit Analyzed: 10/16/13 16:08 ND 0.0010 mg/l Analyzed: 10/16/13 16:10 0.0436 0.0010 mg/l 80-120 Source: 3J02078-04 Analyzed: 10/16/13 16:12 0.0520 0.0010 mg/l 0.00664 75-125 Source: 3J02078-04 Analyzed: 10/16/13 16:15 75-125 11 20 Reporting Spike Source % REC RPD

Date Received: 10/02/13 09:00 **Date Reported:** 11/21/13 09:34

Notes and Definitions

O-14 This analysis was requested by the client after the holding time was exceeded.

O-04 This analysis was performed outside the EPA recommended holding time.

MS-02 The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte

inherent in the sample.

MS-01 The spike recovery for this QC sample is outside of established control limits possibly due to sample matrix interference.

M-04 Due to the nature of matrix interferences, sample extract was diluted prior to analysis. The MDL and MRL were raised due to the dilution.

NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)

NR Not Reportable

Dil Dilution

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

% Rec Percent Recovery

Sub Subcontracted analysis, original report available upon request

MDL Method Detection Limit

MDA Minimum Detectable Activity

MRL Method Reporting Limit

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

Franklin Industrial Minerals

Material Safety Data Sheet

Material Safety	<u>Data Sheet</u> I - IDENTIF	ICATION		
CHEMICAL NAME	CHEMICAL FO		MOLECULAR WEIGHT	
Limestone	CaCO ₃		Not Applicable	
TRADE NAM Calcium Carbonate, Pulverized Lime Calcium Carbonate, GCC	E/SYNONYMS stone, Ground Limestone, Ground	DO	T IDENTIFICATION NO. Not Restricted	
	II - PRODUCT AND C	COMPONENT D	OATA	
COMPONENT(S) CHEM Calcium Carbona Silica (concentration)		133	REGISTRY NO. 17-65-3 08-60-7	
% APPROXIMATE	ACGIH TLV-TLW See Section VI	OSF	IA PEL	
III - PHYSICAL DATA		IV - RE	ACTIVE DATA	
APPEARANCE & ODOR White, Odorless Grains	SPECIFIC GRAVITY 2.71	STABILITY Stable	CONDITIONS TO AVOID None Known	
BOILING POINT	VAPOR DENSITY	Y (AIR=1)	INCOMPATIBILITY (Materials to Avoid) None Known	
VAPOR PRESSURE % `	OLATILE, By Volume	HAZARDOUS	DECOMPOSITION PRODUCTS	
N/A	N/A	Respirable Dust May Be Generated by Handling and May Contain a Small Amount of Silica		
EVAPORATION RATE N/A	SOLUBILITY IN WATE	ER HAZARDO	OUS POLYMERIZATION Will Not Occur	
	V - FIRE AND EX			
FLASHPOINT (Method U Not Flammable	(sed)	FLAMMABLE I	LIMITS IN AIR	
EXTINGUISHING AGE	NTS U	JNUSUAL FIRE	& EXPLOSION HAZARDS	
None Required		None Known		
	VI - TOXICITY AN	D FIRST AID		
LAI OSCILL LIMITS	n exposure to this and other chemicals is concurrer is Specified Otherwise, Limits Are Exp			
CaCO3 10.0 mg/m3 Silica 0.05 mg/m3 TWA	15.0 For Total	.CFR 1910.1000 TWA Dust / 5.0 For Respirable Dust 3 TWA For Respirable Dust	TLV=Threshold Limit Value TWA=Time Weighted Average	
	S AGGRAVATED BY EX E ADVERSE EFFECT ON LUNGS AND DO N HEN EXPOSURES ARE KEPT BELOW OCCUP	NOT PRODUCE SIGNIFICANT	ORGANIC	
PRIMARY ROUTES OF	EXPOSURE: INHAI	LATION X	SKIN	
Co Eye	osure to dust may irritate respiratory ntactNo Adverse Effects o ContactMay Cause Irritations ostionNon-Hazardous	s Skin Abso	rptionNo Adverse Effects mounts of Dust	
		rater. Contact a Physician		

CHRONIC TOXICITY

Effect and hazards of chronic exposure:

There are no reported health effects associated with repeated or prolonged exposure to pure calcium carbonate. Overexposure to calcium carbonate dust may increase the risk of developing pneumoconiosis (lung disease). Being a naturally occurring mineral, these products contain minimal amounts of crystalline silica as an impurity. Prolonged exposure to respirable crystalline silica at levels above the occupational exposure limits may increase the risk of developing silicosis. IARC has classified crystalline silica as a Class 1 human carcinogen.

VII - PERSONAL PROTECTION AND CONTROLS					
RESPIRATORY PROTECTION	HMIS RATING SYSTEM C.A.S No. 1317-65-3				
NIOSH-MSHA approved dust respirators f are likely to exceed appropriate exposure l applicable MSHA or OSHA standards, wh					
program, respirator fit testing, and other rec	quirements.	HEALTH HAZARD	0*		
VENTILATION Local exhaust or general ventilation ad-	SKIN PROTECTION		NO ACUTE EFFECTS		
equate to maintain exposures below appropriate exposure limits.	See HYGIENE section below.	FLAMMABILITY HAZARD	0		
EYE PROTECTION Safety glasses with side shields should be	HYGIENE Wash dust exposed skin with soap and wa-	REACTIVITY HAZARD	0		
worn as minimum protection. Dust goggles should be worn when excessively (visible) dusty conditions are present or anticipated.	ter. Wash work clothes after each use. Sweep up spills and keep work area clean.	MAXIMUM PERSONAL PROTECTION	A		

OTHER CONTROL MEASURES

Respirable dust levels should be monitored regularly when appropriate exposure limits are likely to be exceeded.

VIII - STORAGE AND HANDLING PRECAUTIONS

Respirable Dust may be generated during processing, handling and storage. The controls identified in Section VII of this MSDS should be applied as appropriate. Suggest storage or warehousing in a dry area.

IX - SPILL, LEAK AND DISPOSAL PRACTICES

STEPS TO BE TAKEN IN CASE MATERIAL IS RELEASED OR SPILLED

The controls identified in Section VII of this MSDS should be applied as appropriate. Spilled materials, where dust can be generated, may over expose cleanup personnel to respirable dust. Wetting of spilled materials and/or use of respiratory protective equipment (dust masks) may be necessary. None of the components in this product are subject to the reporting requirements of *Title III of SARA 1986* and *40 CFR 261*.

WASTE DISPOSAL METHOD

Dispose of this material only in accordance with applicable Federal, State and Local laws and regulations. Pickup and reuse clean materials. Limestone makes an excellent neutralizer for spilled acids. Material may be spread on lawns or fields to promote plant growth.

X - TRANSPORTATION DOT HAZARD CLASSIFICATION None PLACARD REQUIRED None

LABEL REQUIRED

Label is required by the OSHA Hazard Communications Standard (29 CFR 1910.1200[F], and applicable State and Local regulations.

FOR FURTHER INFORMATION CONTACT:

Technical Department
FRANKLIN INDUSTRIAL MINERALS
821 Tilton Bridge Rd., S.E.
Dalton, Georgia 30721-5499
(706)277-3740

The information contained in this MSDS was obtained from sources which we believe are reliable. However, the information is provided without any representation of warranty, express or implied, regarding the accuracy or correctness.

The conditions or methods of handling, storage, use and disposal of this product are beyond our control and may be beyond our knowledge. For this and other reasons, we do not assume responsibility and expressly disclaim liability for loss, damage or expense arising out of, or in any way connected with handling, storage, use or disposal of the products.

Material Safety Data Sheet

Harrison Gypsum Co. Allied Custom Gypsum 708 24th Ave., NW Norman, OK 73069-6232

Phone Number: (405) 366-9500

Preparation Date: 10/10/2005

Section I - Product Identification

Products

Gypsum Rock, Anhydrite Rock

Common Names

Gypsum & Anhydrite

Chemical Names & Formulas

Calcium Sulfate Dihydrate (CaSO4·2H2O) Calcium

Sulfate (CaSO₄)

Section II - Ingredients

	CAS	OSHA PEL*	ACGIH TLV*	Concentration
Ingredients	Number	(mg/m_3)	(mg/m_3)	(%)
Calcium Sulfate Dihydrate	13397-24-5	5/15	10	
Calcium Sulfate	7778-18-9	5/15	10	
Calcium Carbonate	471-34-1	5/15	10	<5
Crystalline Silica	14808-60-7	0.1/-	0.1/-	<1

^{*} Respirable dust/total dust. PEL and TLV limits are based on an 8 hour TWA.

Note: Ground calcium sulfate dihydrate, calcium sulfate and calcium carbonate are classified as nuisance dusts. OSHA believes that nuisance dust may cause safety problems among exposed workers because it can be a source of distraction and physical irritation which can cause accidents or safety mishaps in the workplace.

Section III - Physical/Chemical Characteristics

Appearance Whitish rose or buff colored rock or granular fines Odor None Solubility (in water) Slight Specific Gravity 2.32 to 2.96

Section IV - Fire and Explosion Hazard Data

Flash Point Flammable Limits Fire Extinguishing Media Special Fire-Fighting Procedures Toxic Gases Produced Not Combustible N/A Not Combustible None Decomposes to Sulfur dioxide @1450°C

Page 1 of 3

Section V - Health Hazard Data

Effects of Overexposure

Acute: Persons exposed to large amounts of dust may be forced to leave the area because of

nuisance conditions, including coughing, sneezing, and nasal irritation. Other temporary effects may include drying of the skin and eye irritation. Gypsum is

considered non-toxic.

Chronic: None known for gypsum. Prolonged and repeated exposure to crystalline silica by

inhalation may cause silicosis and lung cancer.

Medical Conditions Generally Aggravated by Exposure: Bronchitis, Emphysema and Asthma

Target Organs: Lungs, eyes

Routes of Entry: Inhalation

Carcinogenicity: <u>IARC</u> <u>NTP</u>

Crystalline silica Carcinogen (Group 1) Anticipated Carcinogen

In 1997, IARC classified inhaled crystalline silica as carcinogenic to humans categorizing it as a Group 1 agent. In this evaluation, IARC noted that carcinogenicity was not detected in all industrial circumstances studied, and may be dependent on inherent characteristics of the crystalline silica or on external factors affecting its biological activity or distribution of its polymorphs. In 1992, NTP listed respirable crystalline silica among the substances "reasonably anticipated to be carcinogens".

Emergency and First-Aid Procedures:

Effects of Overexposure

Acute: Persons exposed to large amounts of dust may be forced to leave the area

because of nuisance conditions, including coughing, sneezing, and nasal irritation. Other temporary effects may include drying of the skin and eye

irritation. Gypsum is considered non-toxic.

Chronic: None known for gypsum. Prolonged and repeated exposure to crystalline

silica by

inhalation may cause silicosis and lung cancer.

Medical Conditions Generally Aggravated by Exposure: Bronchitis, Emphysema and Asthma Target Organs: Lungs, eyes Routes of Entry: Inhalation

Carcinogenicity: <u>IARC NTP</u> Crystalline silica Carcinogen (Group 1) Anticipated Carcinogen

In 1997, IARC classified inhaled crystalline silica as carcinogenic to humans categorizing it as a Group 1 agent. In this evaluation, IARC noted that carcinogenicity was not detected in all industrial circumstances studied, and may be dependent on inherent characteristics of the crystalline silica or on external factors affecting its biological activity or distribution of its polymorphs. In 1992, NTP listed respirable crystalline silica among the substances "reasonably anticipated to be carcinogens".

Ingestion:

If swallowed and the person is conscious, immediately give large

amounts of water. Get medical attention.

Inhalation:

If person breathes in large amounts, move the exposed person to

fresh air. Get medical attention if irritation persists.

Eye Contact:

Remove contact lenses and immediately flush with water for at

least 15 minutes, including under eyelids. Seek medical advice if

irritation persists.

Skin Contact:

Wash with soap and water. If irritation occurs, contact physician.

Precautionary Labeling:

	HM	IS NFPA		
Health	0	0		
Flammability	0	0		
Reactivity	. 0	0	,	
Other	•	N/A		

Rating Scale: 0 = Minimal Hazard, 1 = Slight Hazard, 3 = Serious Hazard, 4 = Extreme Hazard

Precautionary Label Statements:

Caution, may cause irritation during use. Avoid contact with eyes, skin, and clothing. Wash thoroughly after handling. When not in uses keep in tightly closed container.

Page 2 of 3

Section VI - Reactivity Data

Stability:

Stable

Hazardous Polymerization:

Will not occur

Conditions to Avoid:

None

Incompatibles:

Aluminum, Strong Acids

Decomposition Products:

Oxides of Sulfur

Section VII - Spill and Disposal Procedures

Stability: Stable Hazardous Polymerization: Will not occur Conditions to Avoid: None Incompatibles: Aluminum, Strong Acids Decomposition Products: Oxides of Sulfur

Steps to be taken in the event of a spill or discharge: Remove by dry-sweeping or vacuum. Avoid creating excessive dust. Wear approved respirators if necessary. Do not wash down drains since it could plug drains.

Disposal Procedure: For disposal of this material as a waste, act in accordance with all applicable federal, state and local environmental regulations.

Section VIII - Special Protection Information

Ventilation: Use adequate general or local exhaust ventilation to keep dust levels as

low as possible.

Respiratory Protection: None required where adequate ventilation conditions exist. A dust

mask can be used for nuisance dust. If airborne concentrations of any hazardous ingredients exceed the TLV or PEL, use a NIOSH approved

respirator.

Eye Protection:

Safety glasses or goggles, as needed.

Skin Protection: Gloves are not required, but may be desirable under certain working

conditions or to protect against drying of hands.

Section IX - Special Precautions

Ventilation: Respiratory Protection:

Eye Protection: Skin Protection: Use adequate general or local exhaust ventilation to keep dust levels as low as possible. None required where adequate ventilation conditions exist. A dust mask can be used for nuisance dust. If airborne concentrations of any hazardous ingredients exceed the TLV or PEL, use a NIOSH approved respirator. Safety glasses or goggles, as needed. Gloves are not required, but may be desirable under certain working conditions or to protect against drying of hands.

Section IX - Special Precautions

Precautions to be taken in handling and storage:

Wear appropriate protective equipment during handling and store in a dry area

minimize potential for clumping due to moisture absorption. Dew point conditions or

other conditions causing presence of moisture will harden gypsum during storage.

All statements, technical information and recommendations contained herein are based on tests and data which this Company believes to be currently reliable, but this accuracy or completeness thereof is not guaranteed and no warranty of any kind is made with respect thereto. This

information is not intended as a license to operate under or a recommendation to practice or infringe any patent of this Company or others covering any process, composition of matter or use. Since the Company shall have no control of the use of the product described herein, the Company assumes no liability for loss or damage incurred from the proper or improper use of such product.

Page 3 of 3

MATERIAL SAFETY DATA SHEET

March 14, 2011

SECTION 1 CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

Product Name: Phoenix Natural Pozzolan / ASTM Class N

Manufacturer's Name and Address:

Salt River Materials Group Phoenix Cement Company 8800 E. Chaparral Rd. Suite 155 Scottsdale, AZ 85250-2606

24-Hour Emergency Telephone: CHEMTREC: 1-800-424-9300

<u>Customer Service:</u> Phone: (480) 850-5757 Fax: (480) 850-4333

Chemical Name: Mixture

<u>Chemical Formula:</u> Complex mixture of inorganic materials including metals and silica

SECTION 2 COMPOSITION/INFORMATION ON INGREDIENTS

Ingredients: Pozzolan Type $N - SiO_2$, AlO_3 , Fe_2O_3

Chemical Additives - N/A

SECTION 3

HAZARD IDENTIFICATION

POTENTIAL HEALTH EFFECTS

Relevant Routes of Exposure:

Eye contact, skin contact, inhalation, ingestion

Inhalation:

Can irritate respiratory tract; long term exposure to respirable silica above the Occupational Exposure Limit (OEL) may produce silicosis in susceptible persons. See below.

Hazardous Component (Specific chemical Identity, Common Name(s))	OSHA PEL	ACGIH TLV	Other Limits Recommended
Silica, Amorphous (SiO ₂) CAS 7631-86-9	$80 \text{ mg/m}^3 / \text{\%SiO}_2 \text{ (total dust)}$	10 mg/m ³ (total dust)	NIOSH: 6 mg/m ³
Silica, Crystalline (SiO ₂) CAS 148-086-97	$30 \text{ mg/m}^3 / (\% \text{SiO}_2) + 2 \text{ (total dust)}$ $10 \text{ mg/m}^3 / (\% \text{SiO}_2) + 2 \text{ (resp. dust)}$	0.1 mg/m ³ (resp. dust)	0.05 mg/m^3

Ingestion:

Possible, but very unlikely to occur in sufficient quantities

Eyes:

Can irritate eyes

Skin:

Can dry and irritate skin; is not absorbed by skin

Signs and symptoms of exposure:

Irritation of eyes, skin, and respiratory system

Acute:

May cause irritation to the respiratory tract, eyes, or skin; alkaline material – irritation may be aggravated by the addition of moisture (sweat)

Chronic:

Prolonged inhalation exposure may cause pulmonary fibrosis or chronic bronchitis

Carcinogenic potential:

Natural Pozzolan is not a listed carcinogen. Respirable crystalline silica from occupational sources is listed as carcinogenic to human by IARC. NTP listed silica, crystalline (respirable) as a compound that

may reasonably be anticipated to be a carcinogen. Presence of crystalline silica in respirable dust has not been established in this source.

Medical conditions which may be aggravated by exposure:

May aggravate existing pulmonary condition if high dust situation is created; dusting conditions should not occur under normal use.

SECTION 4 FIRST AID MEASURES

Eyes:

Immediately flush eyes with a directed stream of water for at least 15 minutes, forcibly holding eyelids apart to ensure complete irrigation of all eyes and lid tissue. Washing eyes within several seconds is essential to achieve maximum effectiveness. If symptoms persist, get medical attention.

Skin:

Immediately flush contaminated areas with water. Remove contaminated clothing and footwear. Wash contaminated areas with plenty of soap and water. Wash clothing before reuse. Discard footwear that cannot be decontaminated. If irritation or rash persist or worsens seek medical attention.

Inhalation:

Remove to fresh air if safe to transport. Otherwise, attempt to provide fresh air by ventilation. If breathing is difficult, have trained person administer oxygen. If respiration or pulse has stopped, have a trained person administer basic life support (cardio-pulmonary resuscitation/automatic external defibrillator) and call for emergency services immediately.

Ingestion:

Never give anything by mouth to an unconscious person. If swallowed, do not induce vomiting. Give large quantities of water. If vomiting occurs spontaneously, keep airway clear and give more water. If symptoms persist get medical attention.

SECTION 5	FIRE FIGHTING MEASURES
-----------	------------------------

Flash point [provided method used]:

None

Upper Explosion Limit: N/A Lower Explosion Limit: N/A

Auto ignition temperature: N/A

Extinguishing media:

No special Media

Fire fighting procedures:

Evacuate all unnecessary personnel. Shut down motors, pumps, electrical service and eliminate all sources of ignition. Use water spray if appropriate or appropriate extinguishing media for fires where water is not appropriate. Wear NIOSH/MSHA approved positive pressure self-contained breathing apparatus and full protective clothing.

Special fire fighting procedures:

No special procedures

Water reactive: N/A

<u>Unusual fire and explosion hazards:</u> None. This material is considered non-flammable and non-combustible. Use fire extinguishing agent suitable for surrounding media.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal Precautions:

People performing the cleanup should have personal protective equipment sufficient to keep material away from skin and to prevent inhalation.

Environmental Precautions and Methods for Clean Up:

Clean up material for use or disposal. Dampen with water mist to control dust (airborne dust) before removal. Do not use compressed air to move material. If loaded on trucks, wet down ash to prevent dusting during transport. Avoid discharge into storm waters, sewer drains, and other waterways.

|--|

Handling:

Avoid breathing dust, use with adequate ventilation. In dusty environments (greater than the PEL/TLV) wear NIOSH/MSHA approved respiratory protection and tight fitting goggles. Local exhaust can be used, if necessary, to control airborne dust levels. Avoid actions that may generate dust. Do not get into eyes, on skin or clothing. Wash thoroughly after handling material. When handling moist or wet product skin protection is required. Impervious boots or shoes covering should be used if material is anticipated to contact feet.

Storage:

Store in cool, dry, ventilated area away from ignition sources (sparks and flame)

SECTION 8 EXPOSURE CONTROL / PERSONAL PROTECTION

Engineering Controls:

Use general local exhaust ventilation and dust collection systems to keep dust level within acceptable limits.

PERSONAL PROTECTION

Respiratory:

If airborne levels are expected to exceed the PEL/TLV use a NIOSH/MSHA approved respirator.

Eye/Face:

Use safety goggles for face shield in dusty operations. Avoid contact lenses

Skin:

Normal work gloves to prevent excessive contact with skin. On regular basis, wash work clothes.

Other:

Recommend coveralls in high concentrated conditions. Wet-wash areas periodically to minimize dust.

SECTION 9	PHYSICAL AND CHEMICAL PROPERTIES
-----------	----------------------------------

Odor:

1.8 to 2.7

No distinctive odor

Vapor Pressure:

Not applicable

Boiling Point:

>2000°F

Appearance:

Light to dark gray, tan or charcoal colored

Physical State:

Powder of varying textures

Vapor Density:

Not applicable

Evaporating Rate:

Melting Point:

>1400°F

pH (in water):

Not applicable

Solubility in Water (% by weight):

Specific Gravity ($H_2O = 1.0$):

0.5%

SECTION 10

STABILITY AND REACTIVITY

Stability:

Stable

Incompatibility:

None known

Hazardous Polymeration:

Not known to occur

Hazardous Decomposition:

Not known to occur and not suspected under normal conditions

Conditions to Avoid:

Any condition that may generate excessive dust

HMIS Hazard Ratings:

Health Hazard: 1 Fire Hazard: 0 Reactivity: 0

SECTION 11

TOXICOLOGICAL INFORMATION

Acute or short-term:

This product is expected to cause irritation of the eyes, skin and mucous membranes. Product may cause sneezing and coughing if inhaled. Swallowing this product may produce gastrointestinal discomfort. Inhalation of this product may produce irritation of the upper respiratory tract and asthmalike responses in some individuals.

Chronic or long-term:

This product contains crystalline silica, which upon long-term exposure to levels above the PEL/TLV may produce bronchitis, silicosis, a fibrotic (scarring) disease of the lungs and potentially lung cancer. Studies have shown that smoking increases the risk of these diseases. This product may also increase the risk of scleroderma for which the causes are unknown, but some reports link over exposure to silica in combination with other chemicals to this disease.

SECTION 12

ECOLOGICAL INFORMATION

Ecotoxicity:

No data available. This material is believed to be non-toxic to aquatic life.

Persistence:

No data available. This material is believed to be unlikely to persist in the environment.

Bioaccumulation:

No data available. This material is believed unlikely to bioaccumulate.

SECTION 13 D

DISPOSAL CONSIDERATIONS

This product is not classified as a hazardous waste under RCRA or CERCLA. The material may be land filled; however, material should be covered to minimize generation of airborne dust. Ensure that all federal, state and local regulations are followed.

<u>DISCLAIMER:</u> Users are advised to make their own determinations as to the suitability of the information in this data sheet in relation to their particular purposes and specific circumstances. Each user should read the data sheet and consider the information in the context of how the product will be handled and used in the workplace and in conjunction with other substances or products. Individual responsibility must be taken as to proper use and handling of the product. The manufacturer makes no warranty expressed or implied regarding the accuracy of the information in this data sheet or the results to be obtained in the use of the product.

This MSDS has been prepared in accordance with the Hazard Communication Rule 29 CFR 1910.1200. Information herein is based on data considered to be accurate as of the date prepared. No warranty or representation, expressed or implied, is made as to the accuracy or completeness of this data and safety information. No responsibility can be assumed by Salt River Materials Group, or its partners and vendors for any damage or injury resulting from abnormal use, failure to adhere to recommended practices, or from any hazards inherent in the nature of the product.

LEHIGH CEMENT COMPANY MATERIAL SAFETY DATA SHEET FOR PORTLAND CEMENT

REVISED DATE: OCTOBER, 2002

1. PRODUCT/COMPANY IDENTIFICATION

Supplier: Chemical Family: Calcium Compounds

Lehigh Cement Company 7660 Imperial Way

Allentown, PA 18195 610 / 366 - 4600

Contact Number: 1-800-462-9071

Cement Types I, II, III, V
-800-462-9071 Trade Name and Synonyms:

Lehigh Portland Cement

Chemical Name and Synonyms:

Portland Cement (CAS # 65997-15-1), Hydraulic

2. EMERGENCY AND FIRST AID

EMERGENCY INFORMATION:

Portland cement is a light gray or white powder. When in contact with moisture in eyes or on skin, or when mixed with water, portland cement becomes highly caustic (pH > 12) and will damage or burn (as severely as third-degree) the eyes or skin. Inhalation may cause irritation to the moist mucous membranes of the nose, throat and upper respiratory system or may cause or may aggravate certain lung diseases or conditions. Use exposure controls or personal protection methods described

in Section 10.

EYES: Immediately flush eye thoroughly with water. Continue

flushing eye for at least 15 minutes, including under lids, to

remove all particles. Call physician immediately.

SKIN: Wash skin with cool water and pH-neutral soap or a mild

detergent. Seek medical treatment if irritation or inflammation develops or persists. Seek immediate medical treatment in the

event of burns.

INHALATION: Remove person to fresh air. If breathing is difficult, administer

oxygen. If not breathing, give artificial respiration. Seek medical help if coughing and other symptoms do not subside. Inhalation of large amounts of portland cement require

immediate medical attention.

INGESTION: Do not induce vomiting. If conscious, have the victim drink

plenty of water and call a physician immediately.

ACCIDENTIAL RELEASE MEASURES Clean up spilled material without causing it to become airborne

or mixed with water to limit potential harm. Wear appropriate personal protective equipment. Dispose of waste material

according to local, state or federal regulations.

3. COMPOSITION INFORMATION

DESCRIPTION:

This product consists of finely ground portland cement clinker mixed with a small amount of gypsum (calcium sulfate dihydrate). The portland cement clinker is made by heating to a high temperature a mixture of substances such as limestone, sand, clay and shale. Portland cement is essentially hydraulic calcium silicates contained in a crystalline mass, not separable into individual components. Major compounds are:

3CaO•SiO ₂	Tricalcium Silicate	CAS #12168-85-3
2CaO•SiO ₂	Dicalcium Silicate	CAS #10034-77-2
3CaO•Al ₂ O ₃	Tricalcium Aluminate	CAS #12042-78-3
4CaO•Al ₂ O ₃ •Fe ₂ O ₃	Tetracalcium	CAS #12068-35-8
	aluminoferrite	
CaSO ₄ •2H ₂ O	Calcium Sulfate	CAS #7778-18-9
	dihydrate (Gypsum)	(CAS #13397-24-5)

4. HAZARDOUS INGREDIENTS

COMPONENT	OSHA PEL (8-Hour TWA)	ACGIH TLV-TWA (1995-1996)	NIOSH REL (8-Hour TWA)
Portland Cement (CAS #65997-15-1) 50 to 95% by weight	5 mg respirable dust/m ³ 15 mg total dust/m ³	10 mg total dust/m ³	
Calcium sulfate (CAS #7778-18-9) [Gypsum (CAS #13397-24-5)] 0 to 10% by weight	5 mg respirable dust/m ³ 15 mg total dust/m ³	10 mg total dust/m ³	
Iron oxide (CAS #1309-37-1) 0 to 15% by weight	10 mg/m ³	5 mg/m ³	
Calcium carbonate (CAS #1317-65-3) 0 to 5% by weight	5 mg respirable dust/m ³ 15 mg total dust/m ³	10 mg total dust/m ³	
Magnesium oxide (CAS #1309-48-4) 0 to 5% by weight	15 mg total dust/m ³	10 mg total dust/m ³	
Calcium oxide (CAS #1305-78-8) 0 to 5% by weight	5 mg/m ³	2 mg/m^3	
Crystalline silica (CAS #14808-60-7) 0 to 5% by weight	$\frac{10 \text{ mg of respirable dust/m}^3}{\% \text{ SiO}_2 + 2}$ $\frac{30 \text{ mg of total dust/m}^3}{\% \text{ SiO}_2 + 2}$ $\frac{250 \text{ million particles/ft}^3}{\% \text{ SiO}_2 + 5}$	0.05 mg respirable quartz/m ³	0.05 mg respirable quartz dust/m³

TRACE INGREDIENTS:

Due to the use of substances mined from the earth's crust, trace amounts of naturally occurring, potentially harmful constituents may be detected during chemical analysis. Portland cement may contain up to 0.75% insoluble residue. A small amount of this residue includes free crystalline silica. Portland cement also may contain trace (<0.05%) amounts of chromium salts or compounds (including hexavalent chromium) or other metals (including nickel compounds) found to be hazardous or toxic in some chemical forms. These metals are present mostly as trace substitutions within the principal minerals. Other trace constituents may include potassium and sodium sulfate compounds.

PAGE 2 OF 6

¹ If Portland/Lime blended product "0 to 25%" values.

5. HAZARD IDENTIFICATION

POTENTIAL HEALTH EFFECTS:

NOTE: Potential health effects may vary depending upon the duration and degree of exposure. To reduce or eliminate health hazards associated with this product, use exposure controls or personal protection methods as described in Section 10.

EYE CONTACT:

(Acute/Chronic) Exposure to airborne dust may cause immediate or delayed irritation or inflammation of the cornea. Eye contact by larger amounts of dry powder or splashes of wet portland cement may cause effects ranging from moderate eye irritation to chemical burns and blindness.

SKIN CONTACT:

(Acute) Exposure to dry portland cement may cause drying of the skin with consequent mild irritation or more significant effects attributable to aggravation of other conditions. Discomfort or pain cannot be relied upon to alert a person to a hazardous skin exposure.

(Chronic) Dry portland cement coming in contact with wet skin or exposure to wet portland cement may cause more severe skin effects, including thickening, cracking or fissuring of the skin. Prolonged exposure can cause severe skin damage in the form of chemical (caustic) burns.

(Acute/Chronic) Some individuals may exhibit an allergic response upon exposure to portland cement. The response may appear in a variety of forms ranging from a mild rash to severe skin ulcers.

INHALATION:

(Acute) Exposure to portland cement may cause irritation to the moist mucous membranes of the nose, throat and upper respiratory system. Pre-existing upper respiratory and lung diseases may be aggravated by inhalation of portland cement.

(Chronic) Inhalation exposure to free crystalline silica may cause delayed lung injury including silicosis, a disabling and potentially fatal lung disease, and/or cause or aggravate other lung diseases or conditions.

INGESTION:

(Acute/Chronic) Internal discomfort or ill effects are possible if large quantities are swallowed.

CARCINOGENIC POTENTIAL:

Portland cement is not recognized as a carcinogen by NTP, OSHA, or IARC. However, it may contain trace amounts of heavy metals recognized as carcinogens by these organizations. In addition, IARC classifies crystalline silica, a trace constituent, as a known human carcinogen (Group I). NTP has characterized respirable silica as "reasonably anticipated to be a carcinogen." (See also Section 13.)

PHYSICAL/CHEMICAL DATA 6.

APPEARANCE/ODOR: Gray, white or colored PHYSICAL STATE: Solid (Powder)

powder, odorless

BOILING POINT: > 1000°C MELTING POINT: Not applicable

VAPOR PRESSURE: Not applicable VAPOR DENSITY: Not applicable

pH (IN WATER) (ASTM D

1293-95)

12 to 13

SOLUBILITY IN WATER:

Slightly soluble (0.1% to 1.0%)

None

SPECIFIC GRAVITY (H2O 3.15 **EVAPORATION RATE:** Not applicable

= 1.0):

7. FIRE AND EXPLOSION

FLASH POINT: LOWER EXPLOSIVE LIMIT: None None

AUTO IGNITION Not combustible UPPER EXPLOSIVE LIMIT: TEMPERATURE:

FLAMMABLE LIMITS SPECIAL FIRE FIGHTING Not applicable None

PROCEDURES:

UNUSUAL FIRE AND EXPLOSION EXTINGUISHING MEDIA: Not combustible None

HAZARDS:

HAZARDOUS COMBUSTION PRODUCTS:

None

8. STABILITY AND REACTIVITY DATA

STABILITY: Product is stable. Keep dry until used.

CONDITIONS TO AVOID: Unintentional contact with water. Contact with water will result

in hydration and produces (caustic) calcium hydroxide.

INCOMPATIBILITY: Wet portland cement is alkaline. As such, it is incompatible

with acids, ammonium salts and aluminum metal.

HAZARDOUS DECOMPOSITION: Will not occur.

HAZARDOUS POLYMERIZATION: Will not occur.

> 9. PRECAUTIONS FOR HANDLING, STORAGE AND DISPOSAL

HANDLING AND STORAGE Keep dry until used. Handle and store in a manner so that

> airborne dust does not exceed applicable exposure limits. Use adequate ventilation and dust collection. Use exposure control and personal protection methods as described in Section 10.

Use dry clean-up methods that do not disperse dust into the air **SPILL:**

or entry into surface water. Material can be used if not

contaminated. Place in an appropriate container for disposal or use. Avoid inhalation of dust and contact with skin and eyes. Use exposure control and personal protection methods as

described in Section 10.

DISPOSAL: Comply with all applicable local, state and federal regulations

for disposal of unusable or contaminated materials. Dispose of

packaging/containers according to local, state and federal

regulations.

10. EXPOSURE CONTROLS/PERSONAL PROTECTION

RESPIRATORY PROTECTION: Use local exhaust or general dilution ventilation to control dust

levels below applicable exposure limits. Minimize dispersal of

dust into the air.

If local or general ventilation is not adequate to control dust levels below applicable exposure limits or when dust causes irritation or discomfort, use MSHA/NIOSH approved

respirators.

EYE PROTECTION: Wear safety glasses with side shields or goggles to avoid contact

with the eyes. In extremely dusty environments and unpredictable environments, wear tight-fitting unvented or indirectly vented goggles to avoid eye irritation or injury. Contact lenses should not be worn when handling cement or

cement containing products.

SKIN PROTECTION: Wear impervious abrasion- and alkali-resistant gloves, boots,

long-sleeved shirt, long pants or other protective clothing to prevent skin contact. Promptly remove clothing dusty with dry portland cement or clothing dampened with moisture mixed with portland cement, and launder before re-use. If contact occurs, wash areas contacted by material with pH neutral soap

and water.

11. TRANSPORTATION DATA

Portland cement is not hazardous under U.S. DOT regulations.

12. TOXICOLOGICAL AND ECOLOGICAL INFORMATION

For a description of available, more detailed toxicological and ecological information, contact Lehigh Cement Company.

13. OTHER REGULATORY INFORMATION

Status under US OSHA Hazard Communication Rule 29 CFR 1910.1200:

Portland cement is considered a hazardous chemical under this regulation and should be included in the employer's hazard

communication program.

Status under CERCLA/Superfund, 40 CFR 117 and 302:

Not listed.

Hazard Category under SARA (Title III),

Sections 311 and 312:

Portland cement qualifies as a hazardous substance with delayed

health effects.

Status under SARA (Title III), Section 313: Maybe subject to reporting requirements under Section 313.

Contact sales office for further information.

Status under TSCA (as of May 1997): Some substances in portland cement are on the TSCA inventory

list.

Status under the Federal Hazardous Substances

Act:

Portland cement is a hazardous substance subject to statutes

promulgated under the subject act.

Status under California Proposition 65:

This product contains crystalline silica, a substance known to the State of California to cause cancer. This product also may contain trace amounts of heavy metals known to the State of California to cause cancer, birth defects or other reproductive harm.

14. OTHER INFORMATION

This MSDS provides information on various types of portland cement products. A particular product's composition may vary from sample to sample. The information provided herein is believed by Lehigh Cement Company to be accurate at the time of preparation or prepared from sources believed to be reliable. Health and safety precautions in this data sheet may not be adequate for all individuals or situations. Users have the responsibility to comply with all laws and procedures applicable to the safe handling and use of the product, to determine the suitability of the product for its intended use, and to understand possible hazards associated with mixing portland cement with other materials. This product neither contains nor is directly manufactured with any controlled ozone depleting substances, Class I and II. SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, CONCERNING THE PRODUCT OR THE MERCHANTABILITY OR FITNESS THEREOF FOR ANY PURPOSE OR CONCERNING THE ACCURACY OF ANY INFORMATION PROVIDED BY LEHIGH CEMENT COMPANY.

ABBREVIATIONS

ACGIH American Conference of Governmental Industrial Hygienists

ASTM American Society for Testing and Materials

CAS Chemical Abstract Service

CERCLA Comprehensive Environmental Response, Compensation and Liability Act

CFR Code of Federal Regulations

ft³ Cubic foot

IARC International Agency for Research on Cancer

m³ Cubic meter mg Milligram

MSHA Mine Safety and Health Administration

NIOSH National Institute for Occupational Safety and Health

NTP National Toxicology Program

OSHA Occupational Safety and Health Administration

PEL Permissible Exposure Limit
REL Recommended Exposure Limit

SARA Superfund Amendments and Reauthorization Act

TLV Threshold Limit Value
TSCA Toxic Substance Control Act
TWA Time Weighted Average